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Area	=	.1	••	•	Area=	.8	Area	=	.1	I	544	Tables	Appendix	C	'	I	•	Pr(T	2	t)	Table	II	t	distribution	critical	values	df	.25	.10	.05	.025	Right	tail	probability	p	.02	.0	I	.005	.0025	.001	.0005	l	3.078	6.314	1	2.71	15.89	3	1	.82	63.66	127.3	318.3	636.6	2	LOOO	0.8	1	6	!.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	3	1	.60	3	0.765	1	.638	2.353	3.182	3.482
4.541	5.841	7.453	10.21	12.92	1.533	2.!32	2.776	2.999	3.747	4.604	5.598	7.173	8.610	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959	5	0.74	I	6	0.718	7	0.7	1	1	L440	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408	8	0.706	!.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041	9	0.703
1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781	10	0.700	1.372	1.812	2.228	2.359	2.764	3.!69	3.581	4.144	4.587	11	0.697	1.363	1	.796	2.201	2.328	2.718	3.	,	(X.,	Yn)	be	a	sample	from	a	N(I'I	.	The	most	important	feature	of	a	Bayesian	model	is	the	conditional	distribution	of	f)	given	X	=	which	is	called	the	posterior	distribution	of	8.	I	I	'	I	'	'	7.
Moreover,	That	is,	the	Taylor	series	for	4.	Inference	in	the	Multiparameter	Case.	Let	Fx	and	F-X	be	the	empirical	distributions	based	on	the	i.i.d.	X1	,	.	•	q(xn+l	I	x	n+l	)=	n	1	iIJl	p(x;	I	B)1r(B)d8j	1	iIJl	p(xi	I	B)1r(B)d8	e	=	e	=	with	a	sum	replacing	the	integral	in	the	discrete	case.	l	6)	'	!	•	'	'	i	'	with	equality	holding	if	and	only	if	(1)	X1	or	X2	is	a	constant
or	Co	=	(2)	(X1	-	E(X1))	�ar	(X�/')	(X2	-	E(X2	)).	Action	space.	Let	9	have	prior	density	1r.	,z(k)})	�	1	'	I	l	•	'	•	'	Section	6.7	Problems	and	Complements	435	(b)	The	linear	span	of	{zl	1	1	,	.	Let	I;n	be	the	indicator	of	the	event	[N(jtfn)	-	N(	(j	l)t/n)	>	lj	and	definer	Nn(t)	=	'L7	1	I;n·	Then	Nn(t)	differs	from	N(t)	only	insofar	as	multiple	occurrences	in	one
of	the	small	subintervals	are	only	counted	as	one	occurrence.	(b)	Show	that	(afja�)F	has	an	Fnz-I,n1	-I	distribution	and	that	critical	values	can	be	obtained	from	the	F	table.	,	Xn	are	independent,	each	with	Hardy-Weinberg	frequency	function	f	given	by	352	Asymptotic	Approximations	X	J(x)	0	B	I	2B(I	-	B)	Chapter	5	2	(I	-	B)2	where	0	<	e	<	I.	_	_	-.
Show	that	in	Theorem	1.6.3,	the	condition	that	E	has	nonempty	interior	is	equivalent	to	the	condition	that	£	is	not	contained	in	any	(	k	I)-dimensional	hyperplane	.	'	I	Hint:	Use	Jensen's	inequality	B.9.3.	I	(b)	1f	Zn	Lp	�	Z,	then	Zn	�	Z.	,	Xn	.	Let	T	=	X	p.0	and	8	p.	That	is,	we	measure	the	response	of	a	subj	ect	when	under	treatment	and	when	not	under
treatment.	Making	detenninations	of	ing	to	J.l	"specialness"	corresponds	to	testing	significance.	)	1}	in	Example	1.1.1.	.	log	f(X1	,	B)	2	=	•	•	,	=	,	(B)	and	(3.4.17)	182	Measures	of	Performance	Proof.	Example	1.3.5.	Suppose	we	haVe	two	possible	states	of	nature,	which	we	represent	by	81	and	82	.	If	c	=	0,	g	is	called	a	linear	transformation.	Suppose	U
(The	bivariate	log	normal	distribution)	.	(c)	Show	that	E�	xi	in	part	(b)	has	a	negative	binomial	distribution	with	parameters	distributions	of	l	(n,9)	defined	by	Pe	iL:7	1	X,	=	k]	�	(	�	)	n	+	-	l	(	1	-	9)'9",	k	=	0	,	1	,	2	,	.	Fix	Oo	and	let	r(x,	0)	=	log	f(x,	0)	-	log	f(x,	Oo),	q(x,	0)	=	g(x,O)	-	g(x,Oo).	(X,OJ-	�')	=	'	w	0	(	X,	I'	)	-	1	}	=	0	OJ	-	(b)	Give	an	algorithm
such	that	starting	at	jP	=	0,	0:0	=	1,	ji(i	)	---+	ji,	(T(i	)	__.	We	also	give	a	connection	between	confidence	intervals,	two-sided	tests,	and	the	three-decision	problem	of	deciding	whether	a	parameter	8	is	(}0,	less	than	4.6	80,	or	larger	than	90,	where	80	is	a	specified	value.	In	these	terms	the	hypothesis	of	"no	bias"	can	now	be	translated	into:	Pml	P!ld	H:
Pmid	+	PmOd	PJld	+	PJOd	N	.	The	likelihood	ratio	test	for	H	:	9	=	Bo	versus	K	:	(J	=	fh	is	based	on	'	.	,	Xn	are	i.i.d.	F	E	:F	Then	X	is	minimax	for	estimating	B(F)	=	Ep(XI	)	with	quadratic	loss.	Again	using	the	normal	approximation	,	we	find	(	nO	+	l	so	(3(0)	=	Po	(S	2:	so	)	=	[n0(1	�	O)]'f2	)	.	Hint:	Use	Problem	4.2.4	and	recall	(Proposition	B.4.2)	that
linear	combinations	of	bivariate	normal	random	variables	are	normally	distributed.	Example	4.1.1.	Sex	Bias	in	Graduate	Admissions	at	Berkeley.	1.3	Chapter	1	Statistics	as	Functions	on	the	Sample	Space	•	Models	and	parametrizations	are	creations	of	the	statistician,	but	the	true	values	of	param	eters	are	secrets	of	nature.	'	(ii)	EJX,	jm	<	oo	Let	E(X1)
=	�'•	Var(X1)	=	a2	We	have	the	following.	l8)	I	'	'	•	•	'	'	'	l	�	.	LEHMANN,	E.	is	an	integer,	given	x,	O(t	+	v)	has	a	x�+n	distribution.	Although	the	sufficient	statistics	we	have	obtained	are	"natural,"	it	is	important	to	notice	that	there	are	many	others	x2	X	XJ/(X1	+	X,)	''	'	''	'	'	X2	8,	XJ/(X1	+X,)	Xt	X2	XI	[XJ/(Xt	+	X,)](Xt	+	X,)	Xt	X1	+	X,	8,	(Xt,X2)	X.	For
instance,	in	Example	1.1.3	with	the	Gaussian	two-sample	model	I'(A)	�	J.L,	J.L(B)	�	I'	+	fl.	For	instance,	for	e,	=	(tm,	oo	),	we	may	consider	l(O,	0)	=	(B	-	Bo),	B	E	91	•	In	general,	when	testing	H	:	B	<	Bo	versus	K	:	(}	>	Bo,	a	reasonable	class	of	loss	functions	are	those	that	satisfy	l(O,	1)	-	l(O,O)	>	0	for	B	<	00	l(0,	1)	-	l(0,0)	<	0	for	B	>	Bo.	(4.3.4)	i	'	1	i
1	•	1	'	'	Section	4.4	233	Confidence	Bounds,	Intervals,	and	Regions	The	class	D	of	decision	procedures	is	said	to	be	complete<	1	),(2)	if	for	any	decision	rule	'P	there	exists	15	E	V	such	that	R(O,	J)	!')	=	1	-	a;	is	a	lower	bound	with	'	and	a	solution	is	I'(X)	=	X	+	o-z(1	-	a)j.,fn.	,	Xn	is	a	sample	from	a	P(.\)	distribution.	Almost	all	the	previous	ones	have	been
kept	with	an	approximately	equal	number	of	new	ones	added-to	correspond	to	our	new	topics	and	point	of	view.	Let	I	X	has	distribution	,	(1	-	a),	that	is	J	!	,	P[v	E	S(	X	)	]	>	1	-	a,	''	and	v	=	v(P)	be	a	parameter	that	takes	values	in	the	set	N.	!0.12)	is	the	familiar	"square	on	the	hypotenuse"	theorem	whereas	(8.!0.13)	says	that	the	cosine	between	x1	and
x2	is	<	1	in	absolute	value.	As	might	be	expected,	if	n	is	large,	these	bounds	and	intervals	differ	little	from	those	obtained	by	the	first	approximate	method	in	Example	4.4.3.	,	•	1	•	•	I	'	'	•	I	l	I	'	i	•	•	•	l	I	'	•	4	k(O,O.i6)	3	'�	I	I	i	l	l	I	i	,	Figure	4.5.2.	Plot	of	k(O,	0.16)	for	n	=	2.	Hint:	It	suffices	to	show	that	Z	is	independent	of	(Z2	-	Z�	.	G.,	S.	,	Yn	-	Hmt:
Use	Bm,n	=	(mX/nYJII	+	(mXjnY))	independent	standard	exJX>nentials.	Location,"	Ann.	Measures	212	of	Performance	Chapter	3	"The	Influence	Curve	and	Its	Role	in	Robust	Estimation,"	J.	Then	the	Next	consider	the	testing	framework	where	we	test	the	hypothesis	for	some	specified	value	vo.	The	more	difficult	argument	needed	for	(5.3.3)	and	j	odd
is	given	in	Problem	5.3.2.	Let	I'	=	E(XI)	=	0,	then	i	X)	E(Xi)	-	n	-iE(""	�	I	�=	..	L.,	"Model	Specification:	Statist.	Note	that	in	particular	(3.4.8)	is	assumed	to	hold	if	T(x)	�	I	for	all	x,	and	we	can	interchange	differentiation	and	integration	in	J	p(x,	B)dx.	Con	10.	,	n	where	E1	,	.	-	>.	The	joint	distribution	of	(8,	X)	is	that	of	the	outcome	of	a	random
experiment	in	which	we	first	select	f)	=	()	according	to	7r	and	then,	given	(J	=	(),	select	X	according	to	Pe.	If	both	X	and	(J	are	continuous	or	both	are	discrete,	then	by	(B.l	.3),	(0,	X)	is	appropriately	continuous	or	discrete	with	density	or	frequency	function,	=	f(O,	x)	=	?T(O)p(x,	O)	.	Hierarchies	of	models	are	discussed	throughout.	,	(Xn,	Yn	)	be	a
sample	from	a	N(111,	.u2,	a!,	a�,	p)	population.	Show	that	the	UMP	test	for	testing	H	:	B	>	1	versus	K	:	B	<	1	rejects	H	if	-2E	log	F0(X,)	2:	x1_a,	where	Xt-a	is	the	(1	-	u)th	quantile	of	the	X�n	distribution.	Minassian	who	sent	us	an	exhaustive	and	helpful	listing.	(ii)	11(·	I	C)	is	a	linear	operator	11(ah,	+	f3h,	I	C)	=	a11(h	,	I	C)	+	(311(h,	I	C).	Equality
holds	if	and	only	if	one	of	Z11	Z2	equals	0	or	Z1	=	a	Z2	for	some	constant	a.	relative	efficiency	..-.	(Other	authors	consider	test	statistics	T	that	tend	to	be	small,	when	H	is	false.	(b)	Find	an	approximation	to	P[VX	<	t)	in	terms	of	B	andt.	y	where	the	combinatorial	coefficients	(�)	(B.I.5)	n	vanish	unless	a	,	b	are	integers	with	b	0,	Appendix	B	'	�i	n	•	E(	)
p,·	y	E(	I	Y	I	I	Z	=	z)	=	Ey	]y]p(y	I	z)	<	Ey	]Yi	.	In	most	problems	it	turns	out	that	the	tests	that	arise	naturally	have	the	kind	of	structure	we	have	just	described.	1)	L	Ma	thematical	statistics.	,	Xn	1	fJ)	is	itself	a	function	of	upon	applying	Theorem	1.5.1	we	can	conclude	that	(2.:�	1	xi,	L�	1	x�)	and	fJ	only	and	n	n	T(	X1	,	.	The	likelihood	p	(	x	()	)	at	is
known	and	then	evaluating	0�2	log	p	(x	,	()	)	=	,	(Jl-o,	�	[	:4	t(xi	-	Jl-o)	2	-	:2	]	which	has	the	immediate	solution	�2a0	=	-1	�	LJ	(	Xi	-	fl-	o	)	2	.	'if:j	=	(1/n)	L:�	1	(Yi	-	J1.2	)	2	,	and	n	p	=	I)x,	-	J1.1)(	Yi	-	J1.2	)/n'if1'if2	i=l	respectively,	provided	that	n	>	3.	We	shall	return	to	the	Bayesian	framework	repeatedly	in	our	discussion.	(2)	If	we	let	(}	be	the
probability	that	a	patient	to	whom	the	new	drug	is	administered	recovers	and	the	population	of	(present	and	future)	patients	is	thought	of	as	infinite,	then	S	has	a	B(n,	0)	distribution.	A	fruitful	way	of	thinking	of	such	problems	is	in	terms	of	S	as	representing	part	of	X,	the	rest	of	X	is	"miss	ing"	and	its	"reconstruction"	is	part	of	the	process	of
estimating	(}	by	maximum	likelihood.	But	(}	is	still	the	target	in	which	we	are	interested.	r	f{aJ	,	.	In	contrast	to	the	tests	of	Example	4.	Then	we	have	what	is	called	the	AR(l)	Gaussian	model	p(x,,	.	=	+	m;	log	(	l	-	1r;	)	.	This	procedure	can	be	applied,	for	instance,	to	the	F	test	of	the	linear	model	in	Section	6	.	(This	q(y	I	x)	is	sometimes	called	the	P61ya
distribution.)	Hint:	First	show	that	J	'	i	'	•	q(y	I	x)	�	Jp(y	I	0)1r(O	I	x)dO.	A	new	component	is	an	action	space	A	of	actions	or	decisions	or	claims	that	we	can	contemplate	making.	A	is	nonnegative	definite	(nd)	iff	xT	Ax	>	0	for	all	x,	positive	definite	(pd)	if	the	inequality	is	strict	unless	x	=	0.	Be	cause	priority	of	discovery	is	now	given	to	the	French
mathematician	M.	Further	assumptions	that	are	commonly	made	are	that	h	has	a	particular	form,	for	example,	h	=	�a	.(B)	=	l(B,O)	-	l(B,	!)	'	•	•	=	difference	in	loss	of	acceptance	and	rejection	of	bioequivalence.	B(n,	0),	X	is	a	binomial,	random	variable,	and	that	(}	4.	The	efficient	score	function	a�i	logp	(z	,	y	,	{3)	is	(Yi	-	A	o	(Zf{3)	)	Z	f	and	so,	which,
in	order	to	obtain	approximate	confidence	procedures,	can	be	estimated	by	f	:EA.(z{j)	where	:E	is	the	sample	variance	matrix	of	the	covariates.	Show	that	/(·,	B)	corresponds	to	a	one-arameter	exponential	family	of	distributions	with	T(x)	=	x.	(The	quantity	o(h)	is	such	that	o(h)/h	be	interpreted	as	follows.	Applying	(1	.53)	we	arrive	at,	Po	[X	=	x;	IT	=	t;]
0	if	T	(x	;)	oF	I;	h(	x;	)	if	T(x;)	=	1;.	Sufficient	conditions	are	explored	in	the	problems.	There	are	also	situations	in	which	selection	of	what	data	will	be	observed	depends	on	the	experimenter	and	on	his	or	her	methods	of	reaching	a	conclusion.	,Xn)	Xi	Xi	(XI	,	.	For	instance,	in	situation	(d)	again,	patients	may	be	considered	one	at	a	time,	sequentially,
and	the	decision	of	which	drug	to	administer	for	a	given	patient	may	be	made	using	the	knowledge	of	what	happened	to	the	previous	patients.	I	'	'	•	Let	Xi	=	.	Then	the	density	of	(X,,	.	Expected	p-values.	See	Remark	1.4.6.	In	this	section	we	1957)	1	R	LJ=l	consider	YNP	and	the	class	QL	of	linear	predictors	of	the	form	a	+	bj	Zj	·	We	begin	the	search
for	the	best	predictor	in	the	sense	of	minimizing	MSPE	by	consid	ering	the	case	in	which	there	is	no	covariate	information,	or	equivalently,	in	which	Z	is	a	constant;	see	Example	1.3.4.	In	this	situation	all	predictors	are	constant	and	the	best	one	is	that	number	Co	that	minimizes	E(Y	-	c)2	as	a	function	of	c.	An	alternative	approach	is	to	specify	a	proper
subclass	of	procedures,	Do	c	D,	on	other	grounds,	computational	ease,	symmetry,	and	so	on,	and	then	see	if	within	the	D0	we	can	find	0*	E	Do	that	is	best	according	to	the	..gold	standard,"	R(	0,	5)	>	R(0,	5')	for	all	0,	all	5	E	Do.	Obviously,	we	can	also	take	this	point	of	view	with	humbler	aims,	for	example,	looking	for	the	procedure	0;	E	Do	that
minimizes	the	Bayes	risk	with	respect	to	a	prior	1r	among	all	J	E	D0•	This	approach	has	early	on	been	applied	to	parametric	families	V0.	Hint:	There	exist	functions	g(t,	0),	h(x�,	x2)	such	that	log	f(x�,	0)	+	log	j(x2,	0)	=	g(x1	+	x2,	0)	+	h(x1,	x2).	14	1	1	.67	13.28	14.86	16.42	18.47	20.00	5	6.63	9.24	1	1	.07	12.83	1	3.39	15.09	16.75	18.39	20.52	22.	If
we	assume	that	8	has	a	priori	distribution	with	density	"·	we	obtain	by	(1.2.8)	as	posterior	density	of	ll,	rr(9)8.(1	o)n-k	rr(8	l	x,	,	.	Note	that	1	logr	=	-	2c2	c	2	0	and	1	where	l(B	,	O)	and	l	(B	,	l	)	are	not	Any	two	functions	with	difference	>.(8)	are	possible	loss	functions	at	a	=	0	and	This	is	an	example	with	two	possible	actions	constant.	'	'	''	'	'	l	i	Section
8.2	Distribution	Theory	for	Transformations	of	Random	Vectors	489	Theorem	B.2.3	If	X1	and	X2	are	independent	random	variables	with	f(p,	A)	and	f'(q,	A)	distributions,	respectively,	then	Y1	=	X1	+	X2	and	Y2	=	XI/(	XI	+	X2	)	are	independent	and	have,	respectively,	f(p	+	q,	A)	and	fJ(p,	q)	distributions.	Make	no	judgment	as	w	whether	0	<	80	or	8	>	80
if	I	contains	Bo;	Decide	B	<	Bo	if	I	i	s	entirely	to	the	left	of	Bo;	and	Decide	8	>	80	if	I	is	entirely	to	the	right	of	80.	Volume	II:	Introduction	to	Volume	II.	Write	17(	)	for	A	-	l	.	Despite	advances	in	computing	speed,	some	methods	run	quickly	in	real	time.	no	matter	what	=	=	Now	use	the	continuous	version	of	(B.l	.24).	-	-	-	--o--	-	-	--7�	dHO	$	0.02	"�	------
�	�----�3�	2.5	0.5------�	1.5	------�	2	----�	1	log1	0	sample	size	Figure	5.3.2.	Each	plotted	point	represents	the	results	of	10,000	two-sample	t	tests.	B,	49,	240-251	(1987).	Chapters	3	and	4	parallel	the	treatment	of	Chap	ters	4	and	5	of	the	first	edition	on	the	theory	of	testing	and	confidence	regions,	including	some	optimality	theory	for	estimation	as
well	and	elementary	robustness	considerations.	Simultaneous	Confidence	Regions	for	Quantiles.	What	parametrization	we	choose	is	usually	suggested	by	the	phenomenon	we	are	mod	eling;	(}is	the	fraction	of	defectives,	11-is	theunknown	constant	being	measured	.	Evidently	the	beta	family	is	conjugate	to	the	bino	mial.	We	now	show	that	X	is
minimax	in	Example	3.2.1.	Identify	1fk	with	theN('IJo,	72)	prior	where	k	=	72.	n	Xn)	=	L	Var	X;.	k=I	(We	denote	by	"r	+	1"	survival	for	at	least	(r	+	1)	periods.)	Let	M	=	number	of	indices	i	such	that	Yi	=	r	+	1.	The	conditional	distribution	of	Y	given	Z	=	z	is	easy	to	calculate	in	two	special	cases.	(a)	Show	that	L(x,	8o,	8,)	is	an	increasing	function	of	2N,
N2	.	(b)	Use	the	result	(a)	to	give	.,-(8)	and	12.	=	1.	Let	(	X1	,	.	We	can	now	use	(8.1.3)	to	write	down	the	joint	distribution	of	Y	and	Z	.	Identify	T,	h,	'1.	�1	•	'	'	.	,	(Xn,	Yn)	is	a	sample	from	a	bivariate	population	with	E(X)	=	I'	I	·	E(Y)	=	J1.2,	Var(X)	=	uf,	Var(Y)	=	u�,	Cov	(X,	Y)	=	pu1u2	.	Most	analyses	require	asymptotic	theory	and	will	have	to	be
postponed	to	Chapters	5	and	6.	(Use	the	normal	approximation.)	3.	It	is	often	referred	to	as	the	factorization	theorem	for	sufficient	statistics.	After	the	matching,	the	experiment	proceeds	as	follow	s	.	The	absurd	rule	"6•(X)	=	0"	cannot	be	improved	on	at	the	value	B	=	0	because	Eo(62	(X))	=	0	if	and	only	if	O(X)	=	0.	'	Xn	are	i.i.d.	N(e	,	OJ	and	T2	=	L;	-
X,I[X,	statistics.	Let	Y1,	•	•	.	Therefore,	by	using	this	kind	of	procedure	in	a	comparison	or	selection	problem,	we	can	control	the	probabilities	of	a	wrong	selection	by	setting	the	a	of	the	parent	test	or	confidence	intervaL	We	can	use	the	two-sided	tests	and	confidence	intervals	introduced	in	later	chapters	in	similar	fashions.	L.,	D.	If	B(x)	exists	and	lx	is
differentiable,	the	method	extends	straightforwardly.	De	Moivre-Laplace	Theorem	{Sn}	Suppose	that	n,	p)	B(	is	a	sequence	of	random	variables	such	that	for	each	n,	distribution	where	0	<	p	<	1	.	Let	X1	,	,	Xn	be	i.i.d.	as	X	.......,	F,	where	F	is	continuous.	I	I	54.05	43.19	44.14	46.96	49.64	52.22	55.48	57.86	28	32.62	37.92	41.34	44.46	45.42	48.28
50.99	53.59	56.89	59.30	29	33.71	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73	30	34.80	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16	40	45.62	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09	50	56.33	63.17	67.50	7	1	.42	72.61	76.15	79.49	82.66	86.66	89.56	60	66.98	74.40	79.08	83.30	84.58	88.38	91	.95	95.34	99.61
102.69	80	88.13	96.58	101.88	106.63	108.07	1	1	2.33	1	1	6.32	120.10	1	24.84	128.26	100	109.14	1	1	8.50	124.34	129.56	l3l.l4	135.81	140.17	144.29	149.45	153.17	The	entries	in	the	top	row	are	the	probabilities	of	exceeding	the	tabled	values.	The	test	is	then	precisely,	"Reject	H	for	large	values	of	the	MLE	T(X)	of	>...'1	It	seems	natural	in	general	to
study	the	behavior	of	the	test,	"Reject	H	if	Bn	>	c(a,	Bo)	"	where	P&,	[Bn	>	c(a,	Bo	)]	=	a	and	Bn	is	the	MLE	of	e.	=	A(())	because	A	is	strictly	increasing.	,	an}	C	{	x	,	,	.	The	reason	for	these	additions	are	the	changes	in	subject	matter	necessitated	by	the	current	areas	of	importance	in	the	field.	Let	Xt,	.	Suppose	we	have	a	acceptance	regiOn	A	(vo)	�
{x	:	J(x,	vo)	=	0	}	1	-	a.	We	shall	use	these	examples	to	arrive	at	out	formulation	of	statistical	models	and	to	indicate	some	of	the	difficulties	of	constructing	such	models.	when	E(Y2)	<	oo.	In	this	situation	(and	generally)	it	is	important	to	randomize.	"	'	,.	1	4)	and	Lemma	3.4.1,	.,P'(B)	=	(!	logp(X,B),T(X))	.	'	•	•	1	I	Chapter	4	TES	TING	AND	CON
FIDENCE	REGIONS	:	B	AS	IC	TH	EORY	4.1	INTRODUCTION	In	Sections	1.3,	3.2,	and	3	.3	we	defined	the	testing	problem	abstractly,	treating	it	as	a	de	cision	theory	problem	in	which	we	are	to	decide	whether	P	E	Po	or	P1	or,	parametrically,	whether	(}	E	8o	or	81	if	pj	=	{Pe	:	(}	E	ej	}.	R.,	Press,	1992.	The	parameters	D	less	than	or	equal	to	the
natural	number	N.	Problems	for	Section	35	1.	For	a	proof	of	(B.9.4),	see	Billingsley	(1995,	p.	(b)	Show	that	the	likelihood	equations	are	equivalent	to	(2.3.4)	and	(2.3.5).	'	I'	''	'I	'	'•	286	Testing	and	Confidence	Regions	·	-	'	'	'	'	Chapter	4	�	Moreover,	nFx	(x)	2..:�	1	1	[Fx	(Xi)	�	Fx(,·)]	=	nFu(Fx(x)).	11.	6	249	Uniformly	Most	Accurate	Confidence	Bounds
Theorem	4.6.1.	Let	fJ*	be	a	level	{1	-	n)	LCB	for	B,	a	real	parameter,	such	that	for	each	(}0	the	associated	test	whose	critical	function	O*	(x.	:-=;	a	is	obtained	by	setting	q:.(	-c)	=	a	or	c	=	-z(a)	where	-z	(a)	=	z(1	-	a	)	is	the	(1	-	D	a)	quantile	of	the	N(O,	1)	distribution.	In	Example	3.3.2	show	that	2.	For	instance,	in	Example	1.1.3,	P's	that	correspond	to	no
treatment	effect	(i.e	.•	placebo	and	treatment	are	equally	effective)	are	special	because	the	FDA	(Food	and	Drug	Administration)	does	not	wish	to	permit	the	marketing	of	drugs	that	do	no	good.	Bayes	and	Minimax	Criteria	The	difficulties	of	comparing	decision	procedures	have	already	been	discussed	in	the	spe	cial	contexts	of	estimation	and	testing.
will	sometimes	be	used	as	will	obvious	abbreviations	such	as	"binomial	binomial	distribution	with	pmameter	(n,	B)".	A	linkage	model	(Fisher,	1	958,	p.	Let	(x1,	x2	,	.	It	is	in	fact	faster	and	better	to	solve	equation	(2.1.9)	by,	say,	Gaussian	elimination	for	the	particular	z};	Y.	(2)	We	define	the	lower	boundary	of	a	convex	set	simply	to	be	the	set	of	all
boundary	points	r	such	that	the	set	lies	completely	on	or	above	any	tangent	to	the	set	at	r.	To	see	this	note	that	T;	>	0,	1	::;	j	<	k	iffO	<	T;	<	n,	1	<	j	<	k.	NORMAND,	S-L.	BICKEL,	F.	It	will	turn	out	that	in	most	cases	the	solution	to	testing	problem�	with	eo	simple	also	solves	the	composite	80	problem.	The	actual	observation	X	is	X*	contaminated	with
"gross	errors"-see	the	following	discussion.	It	covers	estimation,	prediction,	testing,	confidence	sets,	Bayesian	analysis,	and	the	general	approach	of	decision	theory.	We	also	thank	Faye	Yeager	for	typing,	Michael	Ostland	and	Simon	Cawley	for	producing	the	graphs,	Yoram	Gat	for	proofreading	that	found	not	only	typos	but	serious	errors,	and	Prentice
Hall	for	generous	production	support.	In	this	section	we	introduce	certain	families	of	'	••	I	I	Section	A	.	Note	that	lN	(f3)	the	log	likelihood	of	a	p-parameter	canonical	exponential	model	with	parameter	vector	(	T1	,	.	(a)	Use	this	fact	and	Problem	5.3.14	to	explain	the	numerical	results	of	Problem	5.3.	13(c).	dj	denotes	degrees	of	freedom	and	is	given	in
the	left	column	(margin).	(c)	The	joint	distribution	of	X	+	2Y	and	3Y	-	2X.	Define	(a)	Take	samples	with	replacement	of	size	-	•	.	Upon	being	asked	to	play,	the	gambler	asks	that	he	first	be	allowed	to	test	his	hypothesis	by	tossing	the	die	n	times.	Appendix	A	•	•	7	The	Poisson	distribution	with	parameter	.\	:	P(.\).	Our	null	hypothesis	of	no	treatment
effect	is	then	H	J1-	=	0.	(a)	=	0	unless	each	integer	that	appears	among	{	i1,	But	E(X,,	.	For	instance	(see	Problem	4.6.	7	for	the	proof),	they	have	the	smallest	expected	"distance"	to	0:	Corollary	4.6.1.	Suppose	�·(X)	is	UMA	level	(I	-	a	)	lower	confidence	boundfor	0.	Show	that	the	test	is	9.	,	.	Clearly,	it	is	also	nonincreasing	in	j	for	fixed	e.	STONE,
Introduction	to	Probability	Theory	Boston:	Houghton	Mifflin,	1	9	7	1	.	'	RrsSANEN,	I.,	(1	987).	Ex	tensions	of	unbiasedness	ideas	may	be	found	in	Lehmann	(1997,	Section	1.5).	E	Rk	:	0	<	A;	<	1,j	=	1,	.	If	we	take	a	sample	of	size	n	from	a	population	and	classify	them	according	to	each	characteristic	we	obtain	a	vector	Nii	•	i	=	1,	.	&5	Finding	sup	{p(	x
,	()	)	of	a2	when	J1-	equation	is	=	fl-o	:	()	E	We	found	8	0}	boils	down	t	o	finding	the	maximum	likelihood	estimate	&5	).	The	hypothesis	that	A	and	B	are	equally	effective	can	be	expressed	as	H	:	F�x	(t)	=	Fx	(t)	for	all	t	E	R.	_	eold	and	estimate	of	e.	statistic	that	I	such	that	and	hold	Var	II	(3.4.	1	2)	Proof.	(iii)	Basic	notation	for	probabilistic	objects	such
as	random	variables	and	vectors,	den	:	'	sities,	distribution	functions,	and	moments	is	established	in	the	appendix.	,	Xn	are	i.i.d.	N(i'·	r	1	(0).	7	89	Problems	and	Complements	12.	(5.3.21)	'	'	The	expansion	(5.3.20)	is	ca11ed	the	Edgeworth	expansion	for	Fn	.	SAVAGE,	L.	When	likelihoods	are	noncave,	methods	such	as	bisection,	coordinate	ascent,	and
Newton-Raphson's	are	still	employed,	though	there	is	a	distinct	possibility	of	nonconver	gence	or	convergence	to	a	local	rather	than	global	maximum.	Apply	Corollary	2.3.2.	Problems	for	Section	2.4	1	.	1	n	,P(X;,	On)	-n	L	.	A	statistic	T(X)	is	called	sufficient	for	P	E	P	or	the	parameter	()	if	the	conditional	distribution	of	X	given	T(X)	=	t	does	not	involve	fJ.
An	important	class	of	situations	for	which	this	model	may	be	appropriate	occurs	in	matched	pair	experiments.	Heights	are	always	nonnega	tive.	Thus,	the	two-sided	test	can	be	regarded	as	the	first	step	in	the	decision	procedure	where	if	H	is	not	rejected,	we	make	no	claims	of	significance,	but	if	H	is	rejected,	we	decide	whether	this	is	because	()	is
smaller	or	larger	than	Bo.	For	this	three-decision	rule,	the	probability	of	falsely	claiming	significance	of	either	8	<	Bo	or	()	>	Bo	is	bounded	above	by	�a.	Positive	values	of	Z	indicate	that	A	and	B	are	positively	associated	(i.e.,	that	A	is	more	likely	to	occur	in	the	presence	of	than	it	would	in	the	presence	of	B).	To	see	how	the	process	works	we	refer	to
the	specific	examples	Thi	s	section	includes	situations	i	n	which	=	interest	and	=	in	Sections	4.9.2	4.9.2--4.9.5.	Tests	for	t	h	e	M	e	a	n	o	f	a	N	ormal	Distri	bution-	M	atched	Pair	Experiments	Suppose	X1	,	•	•	,	,	X	n	form	a	sample	from	a	N(J.L,	0"	2	)	population	i	n	which	both	J..l	and	0"	2	are	unknown.	Using	this	framework	we	connect	minimaxity	and
Bayes	metbods	and	develop	sufficient	conditions	for	a	procedure	to	be	minimax	and	apply	them	in	several	important	examples.	The	risk	of	8	at	B	is	=	E[l(B,o(X))]	=	l	(B,	at	)P[o(X	)	=	a	t]	R(B,	5)	+l	(B,	a2	)P	[o(X)	=	a2]	+	l(B,a3	)P[o(X)	=	a3].	,	Yn	be	a	sample	from	a	population	with	mean	11	and	variance	a	2	,	where	n	is	1	even.	E(Y	-	g(Z))2	=	=	Chapter
1	I	1.	The	only	root	of	this	equation	in	[0,	1]	is	the	desired	estimate	(see	Problem	6.4.	1).	Pearson's	statistic	is	then	easily	seen	to	be	(6.4.7)	where	Ri	=	Ni	l	+	Ni	2	is	the	ith	row	sum,	Cj	=	N1j	+	N2J	is	the	jth	column	sum.	Here	are	action	spaces	for	our	examples.	Ep.j;2(X1,0(P))	<	oo	for	all	P	E	P.	As	an	approximation,	this	reads	(	(x	I')	)	.	J	4),	Cov(X1	,
X2)	=	Corr(X1	,	X2)	(A.l	l	.2	l	)	0	when	Var(X;)	>	0,	i	=	1	,	2.	-	a	)	UCB	8	8'	>	e.	LINDLEY,	D.	How	D	to	find	such	nonexplicit	solutions	is	discussed	in	Section	2.4.	If	T	is	discrete	MLEs	need	not	exist.	These	intervals	can	be	obtained	from	computer	pack	ages	that	use	algorithms	based	on	the	preceding	considerations.	They	range	from	trivial	numerical
exercises	and	elementary	problems	intended	to	familiarize	the	students	with	the	concepts	to	material	more	difficult	than	that	worked	out	in	the	text.	Sands,	Eels.,	Ch.	40	Statistical	Mechanics	of	Physics	Reading,	MA:	Addison-Wesley,	1963.	Now	So	=	{Bo}	and	H	is	simple;	8	1	is	the	interval	(80,	1]	and	K	is	composite.	It	is	too	expensive	to	examine	all
of	the	items.	and	let	rk	=	infJ	r(1rk,	8),	where	r(nk,	0)	denotes	the	Bayes	risk	wrt	7rk·	If	Tk	-	r	as	k	---+	oo,	(3.3.	15)	then	J*	is	minimax.	Hint:	Without	loss	of	generality	take	a	�	d	�	1,	b	�	c	�	0	because	(aX	+	bY,	eX	+	dY)	also	has	a	bivariate	normal	distribution.	,	a	,	j	1,	.	we	star	sections	that	could	be	omitted	by	instructors	with	a	classical	bent	and
others	that	could	be	omitted	by	instructors	with	more	computational	emphasis.	Suppose	(a)	Show	that	o(X)	is	both	an	unbiased	estimate	of	respect	to	quadratic	loss,	if	and	only	if,	(b)	Deduce	that	if	Pe	0.	Bernstein	Inequality	for	the	Binomial	Case.	c	.	Chapter	1	covers	probability	theory	rather	than	statistics.	(a)	Find	a	level	1	+	fJ2	z	.	,	(zn,	Yn)	where
Example	1.1.4.	Regression	Models.	The	set	of	distributions	corresponding	to	one	answer,	say	8o,	is	better	defined	than	the	alternative	answer	8	1	.	Let	C	be	an	(n	-	1)	x	(n	(U2,	.	What	is	needed	to	improve	on	this	situation	is	a	larger	sample	size	n.	•	·	·	·	•	M(	X	,	+	n	·+X,	J	(s)	=	IT	Mx,	(s	)	.	We	write	Zn	�	z.	V.,	The	Theory	of	Probability,	GRIMMEI"I,	G.
t=l	U	is	well	defined.	strata	7rk	=	{xki},	1	<	i	<	:"	,	1	<	k	<	K.	For	the	problem	of	estimating	the	constant	IJ..	Let	U	L,	a.s.	p	>	m	+	2•,	0	<	m	<	2•	and	k	0.	a,	T	are	arbitrary:	-oo	<	1]	and	p,,	a,	T	are	arbitrary.	distribution,	where	t	distribution,	then	.6_	=	=	and	ij�	=	where	/1	0	is	1	.	J	0	F	.	Other	important	and	for	�	t	if	t	0	and	0	otherwise	0	and	all
real	t	see	B.8.1	for	the	binomial	case	Bernstein's	inequality).	,	Xn,	c,	Section	3.6	207	Problems	and	Complements	It	is	antisymmetric	if	for	all	x1,	.	,	Yn	a	sample	from	G,	so	that	the	model	is	specified	by	the	set	of	possible	(F,	G)	pairs.	Problems	for	Section	B.4	I.	2	(b)	Plot	(Xi	,	Yi)	and	(Xi	,	fli)	where	Yi	=	e131	e132xi	x	f3	•	Find	the	value	of	x	that	maxi‐
mizes	the	estimated	yield	fj	=	e131	e132xx133	.	,	/3p)	.	Evidently	by	a	mixture	of	experience	and	physical	considerations.	The	likelihood	function	is	given	by	Lx	(B)	-	Let	B	=	arg	max	Lx	(B)	be	"the"	MLE.	Another	bigger	conjugate	family	is	that	of	finite	mixtures	of	beta	distributions	see	Problem	1.2.16.	Recall	that	in	the	Bayesian	model	()	is	the
realization	of	a	random	variable	or	vector	(}	and	that	Po	is	the	conditional	distribution	of	X	given	(}	�	e.	Suppose	X	denotes	the	difference	between	responses	after	a	subject	has	been	given	treatments	A	and	B,	where	A	is	a	placebo.	Let	X	have	the	Dirichlet	distribution,	D(	a)	,	of	Problem	1.2.15.	Show	that	if	T	is	minimal	and	&	is	open	and	the	MLE
doesn't	exist,	then	the	coordinate	ascent	algorithm	doesn't	converge	to	a	member	of	E.	(a)	Let	00(X1,	X2)	=	1	if	and	only	if	Xf	+	Xi	>	c.	Such	models	will	be	called	regular	parametric	models.	The	dual	lower	confidence	bound	is	J.l.,	(X)	=	X	-	z(1	-	a)u/	..fii.	'lj;	t31	·	14.	Both	the	power	and	the	probability	of	type	I	error	are	contained	in	the	power	function,
which	is	defined/or	all	B	E	8	by	•	{3(0)	�	f3(B,	o)	�	Pe[Rejection]	�	Pe[o(X)	�	1]	�	Pe	[T(X)	>	c].	Examples	are	(	1	)	medical	trials	where	at	the	end	of	the	trial	the	patient	has	either	recovered	(Y	=	1	)	or	has	not	recovered	(Y	0),	(2)	election	polls	where	a	voter	either	supports	a	proposition	(Y	=	1)	or	does	not	(Y	0).	>	2	of	observations	s5	=	(no	-	1)-
ti:�"	1	(X,	-	Xo)2•	Then	take	N	-	n0	further	observations,	with	N	being	the	smallest	integer	greater	than	no	and	greater	than	or	equal	to	2	[sot,._,	(	1	-	i	a)	/d]	.	·J	n+a	,	J	=	m,	m	+	l,	.	Z1	and	Y	=	Z1	Hint:	E(Z1	+	z2	4.	(8.10.19)	so	that	All	properties	needed	for	this	to	be	a	Hilbert	�pace	are	immediate	save	for	complete	ness,	which	is	a	theorem	of	F.
References	Gnedenko	(	1	967)	Chapter	10,	Section	'	'	'	'	'	•	'	51	'	Grimmett	and	Stirzaker	(	1992)	Section	6.8	Hoe!,	Port,	and	Stone	(	197	1	)	Section	9.3	Parzen	(1962)	Chapter	6,	Section	5	Pitman	(1993)	Sections	3.5,	4.2	A.17	j	;	'	NOTES	Notes	for	Section	A.S	A	to	be	the	smallest	sigma	field	that	has	every	An	with	Ai	E	Ai,	1	<	i	<	n,	as	a	member.	Show
that	the	likelihoOO	ratio	test	of	H	:	Bt	=	810,	.	suppose	that	N	=	100	and	that	from	past	experience	we	believe	that	each	item	has	probability	.1	of	being	defective	independently	of	the	other	members	of	the	shipment.	'i	I	'	•	'	•	(ii)	Show	that	Wn	(B�2)	)	is	invariant	under	affine	reparametrizations	q	=	a	+	BB	where	B	is	nonsingular.	For	instance,	our
interest	in	studying	a	population	of	incomes	may	precisely	be	in	the	mean	income.	(a)	Let	X	Pe,	8	�	E	8	and	let	8	denote	the	MLE	of	8.	Because	q	=	1,	k	4,	we	obtain	critical	values	from	0	the	x�	tables.	Wiley	&	Sons,	1954.	Example	1.5.2	(continued).	Show	that	the	family	of	distributions	of	Example	1.5.3	is	not	a	one	parameter	CX(Xlnential	family.	,
Bk	=	8ko,	a2	=	a5	is	of	the	form:	Reject	if	(1/a;3)	2:::�	1	(Xi	-	Bio)2	>	k2	or	<	kt.	The	Gaussian	distribution,	whatever	be	J1	and	a,	will.	Hint:	Use	an	orthogonal	transformation	Y	=	AX	such	that	Y1	=	L�	1	(BiXi/8).	Suppose	g	'	S	x	T�	R.	(B.J	0.1)	follows	easily	from	B	.	Take	g{t,8)	ene	t	if	t	>	0,	()	>	0,	and	h(x1,	,	Xn)	=	1	if	all	the	xi	are	>	0,	and	both
functions	=	0	otherwise.	,	En	7.	Monte	Carlo	Methods.	'	i	.	(a)	Find	E(Y	'	=	Suppose	Y	and	Z	have	thejoint	density	p(z,	y)	=	k(k-1	)(z-y)k-2	for0	<	y	<	z	<	I	,	where	k	!	I	Z	I	Z	=	z).	Use	this	to	imitate	the	argument	of	Theorem	6.3.3,	which	is	valid	for	the	i.i.d.	case.	where	n	=	8.	,	Xn	is	a	sample	from	9(9),	then	the	2.:�	1	Xi	form	a	one-parameter
exponential	family.	Faster	versus	slower	algorithms	Consider	estimation	of	the	MLE	8	in	a	general	canonical	exponential	family	as	in	Sec	tion	2.3.	It	may	be	shown	that,	in	the	algorithm	we	discuss	in	Section	2.4,	if	we	seek	to	take	�(J)	01	<	<	<	I	then	J	is	of	the	order	of	log	�	(Problem	3.5.1).	Let	X1,	•	.	On	the	Po[Bn	>	Cn(,	Bo)]	=	Poh/;;/(B)(Bn	-	8)	>
Vn/(ij(cn	(,	Bo)	-	8)].	are	independent,	identically	distributed	£(>.)	such	that	so	on.	A.13.2	If	X	is	the	total	number	of	successes	obtained	in	n	Bernoulli	trials	with	probability	of	success	If	e.	we	obtain	the	relations,	Cov(aX1	+	bX2,	cX3	+	dX,)	=	ac	Cov(X1	.	That	i�,	Fe	(t)	is	decreasing	in	().	Specifically,	Definition	4.1.1.	The	power	of	a	test	against	the
alternative	()	is	the	probability	of	rejecting	H	when	(}	is	true.	=	�?	Thus,	T	is	a	sufficient	statistic	for	0.	•	'	'	'	'	•	I	'	•	'	'	'	�'	'	'	'	'	.	Censored	Geometric	Waiting	Times.	In	Example	1.1.3	with	assumptions	(1H2)	we	are	interested	in	�.	Goodness	of	tit	tests,	robustness,	and	diag	nostics	are	discussed	in	Volume	2,	Chapter	I.	�'	Gross	error	models	.	given
(x,	s2	)	is	such	that	y'n(p.�.X)	"'	tn-I·	Here	s2	=	n-1	1	"	I...J	(	Xt	-	X	)2	•	Hinl:	Given	iJ.	Lehmann's	wise	advice	has	played	a	decisive	role	at	many	points.	and	the	following	lemma.	Let	X1	,	Xn	be	the	indicators	of	n	binomial	trials	with	probability	of	success	B.	1	1	15	18.25	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72	16	19.37	23.54	26.30
28.85	29.63	32.00	34.27	36.46	39.25	41.31	17	20.49	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88	18	21.60	25.99	28.87	3	1	.53	32.35	34.8	1	37.16	39.42	42.31	44.43	19	22.72	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97	20	23.83	28.4!	31.41	34.17	35.02	37.57	40.00	42.34	45.3	1	47.50	21	24.93	29.62	32.67	35.48	36.34	38.93
41.40	43.78	46.80	49.0	1	22	26.04	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51	23	27.14	32.01	35.17	38.08	38.97	41	.64	44.18	46.62	49.73	52.00	24	28.24	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48	25	29.34	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95	26	30.43	35.56	38.89	41	.92	42.86	45.64	48.29	50.83	56.41	27
3	1	.53	36.74	40.	,	v.,	W1	,	dependent	standard	exponential.	(6.5	.	Note:	The	results	of	Problems	4	and	5	apply	generally	to	models	obeying	AO-A6	when	we	restrict	the	parameter	space	to	a	cone	(Robertson,	Wright,	and	Dykstra,	1988).	Let	O(X)	be	any	other	(I	-	a	)	lower	confidence	bound,	then	for	all	0	where	a+	�	a,	if	a	>	0,	and	0	otherwise.	For
instance,	in	Example	1.1.2	with	assumptions	(1)-(4)	the	parameter	of	interest	fl	-	J.L(P)	can	be	characterized	as	the	mean	of	P,	or	the	median	of	P,	or	the	midpoint	of	the	interquantile	range	of	P,	or	more	generally	as	the	center	of	symmetry	of	P,	as	long	as	P	is	the	set	of	all	Gaussian	distributions.	Mathematical	statistics:	basic	ideas	and	selected	topics/
Peter	J.	For	instance,	non-U-shaped	bimodal	distributions	are	not	permitted.	Let	f(t	I	z;)	denote	the	density	of	the	survival	time	Y;	of	a	patient	with	covariate	vector	Zi	apd	define	the	regression	survival	and	hazard	functions	of	Yi	as	Sv(t	I	z;	)	=	!,�	f(y	I	z;)dy,	h(t	I	z;	)	=	f(t	I	z;	)/Sv	(t	I	z;	).	When	we	sample,	say	with	replacement,	and	observe	X1	,	,	X
independent	with	common	distribution,	it	is	natural	to	write	•	.	That	is,	we	use	a	random	number	table	or	other	random	mechanism	so	that	the	m	patients	administered	drug	A	are	a	sample	without	replacement	from	the	set	of	m	+	navailable	patients.	By	Theorem	4.3.1,	the	power	function	Po(T	>	t)	=	1	-	Fo(t)	for	a	test	with	critical	t	is	increasing	in	().
By	definition	T.	But	this	model	is	suspect	because	in	fact	we	are	looking	at	the	population	of	all	applicants	here,	not	a	sample.	SCHLAIFFER,Applied	Statistical	Decision	Theory,	Division	of	Research,	Graduate	School	of	Business	Administration,	Boston:	Harvard	University,	1	9	6	1	.	New	York:	Springer,	1997.	Here	{3(B,	o•)	�	P(S	>	k)	�	tk	(	Jn	)	0;(1	-
B)	n-j	j=	A	plot	of	this	function	for	n	=	1	0,	80	=	0.3,	k	=	6	is	given	in	Figure	4.	,	Xn	is	a	sample	from	any	population	and	Sm	=	E�	1	Xi,	m	:S	n,	show	that	the	joint	distribution	of	(Xi,	Sm)	does	not	depend	on	i,	i	<	m	.	The	if'	part	in	(a)	is	trivial	because	then	xT	Ax	=	xrccT	X	=	1Cxl2.	This	might	arise,	for	example,	in	life	testing	where	each	X	measures
the	length	of	life	of,	say,	an	electron	tube,	and	n	tubes	are	being	tested	simultaneously.	By	the	multivariate	delta	method,	Theorem	5.	Z,	where	Z	has	a	P(>.t)	distribution.	1	applies	and	we	can	conclude	that	if	0	0	for	1	::;	i	::;	k	J)	-S	N(O,	[rr;	(	l	-	rr;	Jr	1	)	.	15	is	employed	with	'Trj	Suppose	the	sampling	scheme	given	in	Problem	_	N·	Show	that	the
resulting	unbiased	Horvitz-Thompson	estimate	for	the	population	mean	has	vari	ance	strictly	larger	than	the	estimate	obtained	by	taking	the	mean	of	a	sample	of	size	n	taken	without	replacement	from	the	population.	Then	for	1	$"	j	<	p,	if	no	=	0,	the	design	matrix	has	elements:	.	Fi	nally,models	such	as	that	of	Example	1.1.3	with	only	(	I	)	holding	and
F,	G	taken	to	be	arbitrary	arecalled	nonparametric.	GLAZEBROOK,	Sequential	Methods	in	Statistics	New	York:	Chapman	I	I	'	'	Chapter	2	METHODS	OF	ESTIMATION	2.1	2.1.1	BASIC	HEURISTICS	O	F	ESTIMATION	Minimum	Contrast	Estimates;	Estimating	Equations	P	E	P,	usually	parametrized	as	P	=	Our	basic	framework	is	as	before,	X	E	X,	X	{Po	:
8	E	8}.	In	the	vertical	sections	of	C	are	the	confidence	regions	S(	whereas	horizontal	sections	are	the	acoeptance	regions	•	=	0).	I	j	Notes	for	Section	3,4	I	(I)	The	result	of	Theorem	3.4.1	is	commonly	known	as	the	CramCr�Rao	inequality.	Then,	by	Problem	(	t	+	b	)	>-	has	a	X�+n	quantile	of	the	a-2	)	.	(a)	If	a	>	0	and	i{)k	is	a	size	a	likelihood	ratio
test,	then	0.	Show	that	under	AO-A5	and	A6	for	011	where	�(llo)	is	given	by	(6.3.21).	critical	value	and	the	probability	of	rejection.	,	Xn	be	independent	normal	random	variables	each	having	variance	1	and	E(Xi)	=	Bi	,	i	1,	.	Therefore,	it	is	reasonable	to	use	the	test	that	rejects,	if	and	only	if,	B	B)	Z	�	z(1	-	a	)	B)	as	a	level	a	one-sided	test	of	H	:	P(A	I	B)
=	P(A	I	B)	(or	P(A	I	B)	:::;	P(A	I	B))	2	>	P(A	I	B)	.	We	may	wish	to	produce	"best	guesses"	i	'	of	the	values	of	important	parameters,	for	instance,	the	fraction	defective	B	in	Example	1	.	,	Xn		x*)	is	a	level	a	test	for	testing	H	:	Xp	<	x*	versus	K	:	xP	>	x*.	,	Yn	which	are	independent,	identically	distributed,	and	have	common	frequency	function,	f(	k,B)	�	Bk-
1	(	1	-	B),	k	�	1	,	.	A	random	variable	X	has	a	P(.A)	distribution.	You	may	use	x	=	0.0289.	•	•	•	4.	=	p,	p	=	E(U;1	p.	Pearson's	x2	Test	401	6.4.2	Goodness-of-Fit	to	Composite	Multinomial	Models.	,	xn,B)	=	B"	exp[-B	I;	x;]	i=l	if	all	the	xi	are	>	0,	and	p(x1,	,	Xn	J	l)	=	0	otherwise.	By	our	theory	if	H	is	true,	because	k	=	4,	q	=	2,	x2	has	approximately	a	xi
dis	tribution.	We	return	to	this	property	in	Problem	6.6.10.	.,-(8	I	x)	when	U.	'	'	Jg	(g-1	(y))	-	det	A.	The	sequence	of	random	variables	{Zn}	is	said	to	converge	to	Z	in	L	norm	if	IZn	-	ZI	P	�	0	P	as	n	-+	oo.	D	These	are	examples	of	a	general	phenomenon.	and	the	MLE	is	unique,	ij'	=	ij	1	=	ij.	Suppose	we	want	to	select	a	sample	size	N	such	that	the
interval	(4.4.1)	based	on	n	=	N	observations	has	length	at	most	l	for	some	preassigned	length	l	=	2d	Stein's	(1945)	two	stage	procedure	is	the	following.	A	Example	1.5.3.	Estimating	the	Size	of	a	Population.	By	(8.10.7)	we	obtain	xT	A-1x	>	xT	B-	1	x	for	all	x	and	the	result	fol	D	lows.	Then,	if	A	<	B.	xE	n	�	1	F(X1,	.	,	(Zn,	Yn)	have	density	as	in	(6.5.8)
and,	(a)	P[Z1	E	{zl	1	l,	.	(1	I	n	the	Bayesian	framework	w	e	define	bounds	and	intervals,	called	level	-	a:	)	credible	bounds	and	intervals,	that	determine	subsets	of	the	parameter	space	that	are	assigned	probability	at	least	the	data	:c.	have	none	of	this.	Bo	with	(}'	and	81	with	(}	in	the	statement	of	Definition	4.4.2	and	the	result	o	If	we	apply	the	result
and	Example	4.2.1	to	Example	4.6.	1	,	we	find	that	x	-	z(l		o:)a	/	JTi	is	uniformly	most	accurate.	If	J.to	is	the	critical	matter	density	in	the	universe	so	that	J.l	<	J.lo	means	the	universe	is	expanding	forever	and	J.l	>	J.kO	correspond	to	an	eternal	alternation	of	Big	Bangs	and	expansions,	then	depending	on	one's	philosophy	one	could	take	either	P's
correspond	<	Jlo	or	those	corresponding	to	J.l	>	J.lo	as	special.	It	is	plausible	that	ei	depends	on	ei-1	because	long	waves	tend	to	be	followed	by	long	waves.	On	this	space	we	can	define	a	random	variable	X	given	by	X(k)	k,	k	0,	1,	.	Moreover,	for	a	=	P(	N,	<	c)	,	this	test	is	UMP	for	testing	H	versus	K	:	0	E	8	1	=	{	1:1	:	1:1	is	of	the	form	(4.3.2)	with	0	<
E	<	1	}.	2	Sn	'	]	This	is	an	example	of	bivariate	normal	density.	,	n,	k	=	2..:	:1	1	xi.	Test	ing	a	n	d	Confidence	Regions	256	C	h	a	pter	4	the	case	in	which	B	is	one-dimen	sional,	optimal	procedures	may	not	exist.	>	.\0,	where	)..	B.2.2	The	Gamma	and	Beta	Distributions	As	a	consequence	of	the	transformation	theorem	we	obtain	basic	properties	of	two
impor	tant	families	of	distributions,	which	will	also	figure	in	the	next	section.	pJOd,	d	1,	.	N(p,o,	a	-	2	and	suppose	>-	has	the	gamma	f(	density	�a,	�	b)	X�	+n	credible	bound	for	A.	Let	X(l)	<	·	·	·	<	X(n)	denote	the	order	statistics	of	X1	,	.	(Wei	bull	density)	,	Xn.	n	>	2,	is	a	sample	from	a	N(Jl,	a2)	distribution.	Consider	the	one-sample	symmetric
location	model	P	defined	by	•	.	(c)	Show	how	the	statistic	An(F)	of	Problem	4.1.17(a)	and	(c)	can	be	used	to	give	another	distribution-free	simultaneous	confidence	band	for	xp.	For	j	>	2	and	any	constant	a,	cj(X	+	a)	=	Cj	(X).	Show	that	B	1(0)	is	continuous.	Prove	Lenuna	2.3.1.	Hint:	Let	c	=	l(O).	If	we	decide	()	<	0,	then	we	select	A	as	the	better
treatment,	and	vice	versa.	,	a(zn)	jT	and	the	vector	parameter	(I'(	zl),	.	3	.6.	The	numbers	N(t)	of	"customers"	(people,	machines,	etc.)	arriving	at	a	service	counter	from	time	0	to	ti	me	t	are	sometimes	well	approximated	by	a	Poisson	process	as	is	the	number	of	people	who	visit	a	WEB	site	from	time	0	to	t.	+·	··+•r=J	i�o>2	all	k	•t	where	.	Set	U;	�	Fo
(X;).	'	Theorem	4.3.1.	Suppose	{Po	:	8	E	8	},	8	c	R,	is	an	MLRfamily	in	T(x).	O	t	,	To	get	a	minimax	test	we	must	have	R(O,	t51r)	=	�t	=	t	'	''	or	=	(	�t)	�	R(v	,	61r),	which	is	equivalent	to	v..fii	�	v	"	-"-'	.,fii	t=	2a	.	(a)	In	the	bivariate	nonnal	Example	2.4.6	,	complete	the	E-step	by	finding	E(Z;	I	Y;),	E(Zl	l	Y;)	and	E(Z;Y;	I	Y;).	Establish	Theorem	5.3.2.
Hint:	Taylor	expand	and	note	that	if	i1	+	·	·	·	+	id	=	m	d	E	II	(Yk	-	JJ.d'	k=l	d	IILI}P(	IXtl	>	ll•ll	+E{I	X,	l"lj	I	I	Xt	l	<	IILI}P(I	Xt	l	<	ll"l	l	·	�	7.	The	Huber	estimate	Xk	is	defined	implicitly	as	the	solution	of	the	equation	n	where	0	<	k	k	-k	ifx	<	-k.	1.8	(1.6.12)	is	a	curved	expo	NOTES	Note	for	Section	1.1	(1)all	dominated	For	the	measure	theoreticaHy
minded	we	can	assume	more	generally	that	the	Po	are	p(x,	9)	denotes	df;11	,	the	Radon	Nikodym	by	a	a	finite	measure	and	derivative.	where	Po,	PI	or	8o,	el	are	a	partition	of	the	model	p	or,	respectively,	the	parameter	space	e.	0.48,	what	is	the	p-value?	B,	49,	223-239	SAVAGE,	L.	The	test	statistic	.\	(x)	is	log	p(x,	(fJo	,	0'02	)	)	{	-	�	[	(log	2	7T)	�
log(a5	/a2	)	.	Only	if	admission	is	deter	mined	centrally	by	the	toss	of	a	coin	with	probability	Pml	Pml	+	PmO	PJl	P!I	+	PJo	[n	fact,	as	is	discussed	in	a	paper	by	Bickel,	Hammel,	and	O'Connell	(	1975),	admissions	are	petfonned	at	the	departmental	level	and	rates	of	admission	differ	significantly	from	department	to	department.	oo	oo	oo	1.	0.,	Statistical
Decision	Theory	and	Bayesian	Analysis	New	York:	Springer,	1985.	Let	Yt	,	.	126	Methods	of	Estimation	Chapter	2	The	proof	is	sketched	in	Problem	2.3.	11.	We	interpret	this	as	saying	that,	for	n	sufficiently	large,	X	is	approximately	equal	to	its	expectation.	(4)	All	of	the	above	and	more,	in	particular,	functions	as	in	signal	processing,	trees	as	in
evolutionary	phylogenies,	and	so	on.	If	Bo	is	a	discontinuity	point	o	k(B,	),	let	j	be	the	limit	of	k(B,	)	as	0	t	Bo.	Then	Po	[S	>	j]	a	for	all	0	<	Bo	and,	hence.	Xt	+	X,	t)	x2	XI	Xt	+X,	1).	(2)	If	Eo061(X)	=	"'	>	0,	then	6,	is	UMP	level	"'	for	testing	H	:	8	<	80	versus	K	:	O	>	O,.	Usually,	if	c5	and	are	two	rules,	neither	improves	the	other.	j=	l	The	Dirichlet	Section
1.7	75	Problems	and	Complements	Show	that	if	the	prion	r(	0)	for	0	is	V(	a),	then	the	posterion	r(	0	f	N	nr	)	where	n	=	(	n	t	�	n	)	is	V(a	+	n),	1	•	•	•	,	Problems	for	Section	1.3	1.	---+	oo	(3.3.16)	I	'	the	left-hand	side	of	(3.3.16)	is	unchanged,	whereas	the	right	tends	to	0	'·	I	Section	3.3	M'mimax	Procedures	175	Example	3.3.3.	Normal	Mean.	Show	that	if
k	=	1	and	&0	#	0	and	A,	A	are	defined	on	all	of	t:,	then	Theorem	1.6.3	continues	to	hold.	(h)	X	Suppose	that	X1	has	the	Cauchy	density	f(x)	=	1/:>r(l	+	x	2),	x	E	R.	Such	a	test	is	called	uniformly	most	powerful	(UMP).	Let	r	and	s	be	numbers	with	r,	s	EI	XYI	When	r	=	1,	r-	1	+	s-1	{EIXIr}	;	{EIYI'J	l	.	BJORK,	AND	N.	For	instance,	an	accounting	finn
examining	accounts	receivable	for	a	finn	on	the	basis	of	a	random	sample	of	accounts	would	be	primarily	interested	in	an	upper	bound	on	the	total	amount	owed.	Suppose	xl,	·	·	.	(L5.5)	Chapter	1	Statistical	Models,	Goals,	and	Performance	Criteria	44	Therefore,	T	is	sufficient.	Show	that	if	randomization	is	permitted,	MP-sized	a:	likelihood	ratio	tests
with	0	1	have	power	nondecreasing	in	the	sample	size.	We	of	ten	want	to	know	whether	such	characteristics	are	linked	or	are	independent.	Show	that	the	conditions	A0--A6	hold	for	P	P/3,	E	P	(where	qo	is	assumed	known).	DoKSuM,	K	A	AND	A.	Moreover,	•	sup	(b)	•	.	(d)	Deduce	that	X(n-k(u)+1	)	(Xc;)	is	the	jth	order	statistic	(1	-	a)	LCB	for	Xp
whatever	be	f	satisfying	our	conditions.	Being	told	that	the	numbers	of	successes	in	five	trials	is	three	is	the	same	as	knowing	that	the	difference	between	the	numbers	of	successes	and	the	number	of	failures	is	one.	Thus,	H	is	rejected	if	x	2	ij)	O(	((	2::	x1	(	1	2n	1	+	n2	2n	405	We	found	in	Example	2.2.6	that	if	)	with	(2n	1	+	n2)/2n.	xiv	Preface	to	the
Second	Edition:	Volume	I	(4)	The	development	of	techniques	not	describable	in	"closed	mathematical	form"	but	rather	through	elaborate	algorithms	for	which	problems	of	existence	of	solutions	are	important	and	far	from	obvious.	ISBN:	9781498723800.	,n	{	!_	-	Fo(x(i))	,	F0(x(i))	-	_,_(i_1_,_)	}	n	n	(4.1.3)	where	x(	l)	<	·	<	X(n)	is	the	ordered	observed
sample,	that	is,	the	order	statistics.	The	study	of	the	model	based	on	the	minimal	assumption	of	randomization	is	complicated	and	further	conceptual	issues	arise.	Cannichael,	in	proofreading	the	final	version,	caught	more	mistakes	than	both	authors	together.	Given	this	position,	how	reasonable	is	this	point	of	view?	We	ignore	difficulties	such	as
families	moving.	No	part	of	this	book	may	be	reproduced,	in	any	form	or	by	any	means,	without	permission	in	writing	from	the	publisher.	Consider	a	point	we	noted	in	Example	2.4.2:	For	some	coordinates	l,	1i{	can	be	explicit.	Furthermore,	(Problem	of	eo,n	under	H,	a	consistent	estimate	of	.:E-	1	(	80)	is	�	�	2	2	1	(6.3.22)	n-	1	[-D,ln(9o,n)	+
D21ln(9o,n)[D1	ln(Bo,n]	Ddn(9o,n)]	......_	--...	The	function	1r	represents	our	belief	or	information	about	the	parameter	()	be	fore	the	experiment	and	is	called	the	prior	density	or	frequencyfunction.	(b)	Using	Problems	B.3.12	and	8.3.13	show	that	the	power	(3(01,	O,)	is	an	increasing	function	of	8f	+	B�.	Thus,	in	the	preceding	P(	>.)	case,	r5	VA	±	2z(1
-	la)	2	vn:	is	an	approximate	1	-	a	confidence	interval	for	J>...	Bickel,	Kjeli	A.	Instead	of	keeping	track	of	several	numbers,	we	need	only	record	one.	Tbe	altemative	is	that	F.x(t)	!	F(t)	for	some	t	E	R.	Two-Sided	Tests	:	We	begin	by	considering	K	fl-o	J1-	i-	fl-O·	This	corresponds	to	the	alternative	"The	treat	ment	has	some	effect,	good	or	bad."	However,	as
discussed	in	Section	4.5,	the	test	can	be	modified	into	a	three-decision	rule	that	decides	whether	there	is	a	significant	positive	or	negative	effect.	Feynman,	R.	,	S�)T	.	Hint:	Use	(B.7.3)	and	note	that	!Zn;	-	Z;l2	<	IZn	-	Zl2	U(O,	1)	and	let	U1	=	I,	U2	=	I{U	E	(0,	�)},	Ua	=	I{U	E	(�,	I)},	U4	=	I{U	E	[o,	m.	'i'	�	,,,.	(1.2.1)	,	N.	More	generally	only
polynomials	of	degree	n	in	p	are	unbiasedly	estimable.	p,	::;	f..L	o	.	(a)	What	test	statistic	should	he	use	if	the	only	alternative	he	considers	is	that	the	die	is	fair?	Using	this	interval	and	(	4.5.3)	we	obtain	the	following	three	decision	rule	based	on	T	=	.JTi(X	a:	o)/	'	l	Do	not	reject	H	:	I'	�	l'c	if	ITI	<	z(l	-	!a).	Ma	jor	differences	here	are	a	greatly	expanded
treatment	of	maximum	likelihood	estimates	(MLEs),	including	a	complete	study	of	MLEs	in	canonical	k-parameter	exponential	fam	ilies.	In	this	case	the	likelihood	is	a	product	of	independent	binomial	densities,	and	the	MLEs	of	1ri	and	J.Li	are	statistic	2	log	.A	for	testing	H	:	ji	is	the	MLE	of	JL	for	11	11	E	w	versus	E	w.	We	can	design	a	clinical	trial,
petfonn	a	survey,	or	more	generally	construct	an	experiment	that	yields	data	X	in	X	C	Rq,	modeled	by	us	as	having	distribution	P9,	0	E	e,	where	8	is	partitioned	into	{eo,	e!}	with	eo	and	e,	conesponding,	respectively,	to	answering	"no"	or	'"yes"	to	the	preceding	questions.	Our	appendix	does	give	all	the	probability	that	is	needed.	What	is	the	MLE?	,	Xn
be	independent	normal	random	variables	with	-	common	mean	and	2	=	I:,�/	X;	-	X(m))2	.	'	Xn	=	Xn	is	that	of	(Y,	Zt,	.	A	Review,"	Ann.	It	fo11ows	that	the	level	and	size	of	the	test	are	unchanged	if	instead	of	8o	�	{8o	)	we	used	6o	�	[0	8o]	.	·	-	-=	-=	8(}	l	dx	for	all	(J	whereas	the	continuity	(or	even	boundedness	on	compact	sets)	of	the	second	inte	gral
guarantees	that	we	can	interchange	the	order	of	integration	in	(4)	The	finiteness	of	Var8	(T(X))	and	1(8)	imply	that	1/J'(8	)	is	finite	by	the	covariance	interpretation	given	in	(3.4.8).	A	level	a	test	of	H	:	J.L	=	J.Lo	vs	K	'	J.1.	>	J.l.o	rejects	H	when	..fii(	X	-	J.l.o	)/u	>	z(1	-	a)	.	Testing.	Example	4.6.1	(Examples	3.3.2	and	4.2.1	continued).	Chapter	3	Measures
of	Performance	E(ii(X)	]	9)	�	9,	E(9	]	X)	�	J(X)	compute	E(J(X)	-	9)2	Prove	Theorem	3.4.4.	Hint:	It	is	equivalent	to	show	that,	for	all	Var(aTO)	·	Note	that	1jJT	>	adx	1,	aT	(1;;(	9)I	-1	(9)'1/	(9))a	¢T	(9)aj	T	J-	1	(9)[1;;	T	(9)aj	.	(3)	The	use	of	methods	of	inference	involving	simulation	as	a	key	element	such	as	the	bootstrap	and	Markov	Chain	Monte	Carlo.
Suppose	V	rv	X�	According	to	Theorem	B.3.	1,	V	has	the	same	distribution	as	E�	1	X[,	where	the	Xi	are	independent	and	Xi	""'	N(O,	I),	i	=	I,	.	i	Section	Ll	Models,	Parameters,	and	Data,	1l	Statistics	Finally,	we	give	an	example	in	which	the	responses	are	dependent.	Let	X	!	'	�	Z	�	N(0,	1)	and	V	�	X�	·	Now	use	Problems	8.2.4	and	Fk,m	•	then
provided	-	�	k	<	r	<	�	m.	Show	that	the	order	statistics	arc	minimal	sufficient	when	f	is	the	density	Cauchy	f(t)	�	1	/Jr(	l	+	t2).	f(en	-	f3en-1)Because	ei	=	Xi	-	Jl,	the	model	for	X	1	,	.	Now	suppose	that	a	sample	of	19	has	been	drawn	in	which	10	defective	items	are	found.	The	result	follows.	-	,n	�).	,	dg	of	Table	1.3.3.	.	Here	the	errors	e1	,	.	Other
theorems	are	available	characterizing	larger	but	more	manageable	classes	of	pro	'	cedures,	which	include	the	admissible	rules,	at	least	when	procedures	with	the	same	risk	function	are	identified.	When	D0	is	the	class	of	linear	procedures	and	l	is	quadratic	Joss,	the	solution	is	given	in	Section	3.2.	In	the	non-Bayesian	framework,	if	Y	is	postulated	as
following	a	linear	regression	model	with	E(Y)	=	zT{3	as	in	Section	2.2.1,	then	in	estimating	a	linear	function	of	the	j3J·	it	is	natural	to	consider	the	computationally	simple	class	of	linear	estimates,	S(Y	)	=	L:�	1	diYi.	This	approach	coupled	with	the	principle	of	unbiasedness	we	now	introduce	leads	to	the	famous	Gauss-Markov	theorem	proved	in
Section	6.6.	We	introduced,	in	Section	1.3,	the	notion	of	bias	of	an	estimate	O(X)	of	a	parameter	q(B)	in	a	model	P	=	{Po	:	0	E	8}	as	Bias9(5)	=	E05(X)	-	'	'	•	i	'	q(B).	Here's	another	important	special	case.	(b)	Show	that	Yi	has	density	p(Y)	=	�Ac"lvl,	double	exponen!ial	or	Laplace	density.	Show	that	'	•	•	•	.	,	Xn	be	a	sample	from	a	N(p,,	u2	)	population,
and	assume	initially	that	u2	is	known.	The	task	of	finding	a	critical	value	is	greatly	simplified	if	Ce(T(X))	doesn't	depend	on	0	for	0	E	eo.	9	•	.	More	generally	consider	the	following	class	of	situations.	If	we	write	Sn	con	Sn	-np	=	.,fii	(Sn	P)	.jnp(!	-	p)	.jp(!	-	p)	-;;-	and	use	(A.14.9),	it	is	easy	to	see	that	(A.	We	have	seen	in	Example	4.1.5	that	a	particular
test	statistic	can	have	a	fixed	distribu	tion	£o	under	the	hypothesis.	Dispersion,	Ann.	and	also	increases	to	1	for	fixed	()	E	61	as	n	oo.	2s.	Let	T	denote	a	survival	time	with	density	fo(t)	and	hazard	rate	ho(t)	=	The	Cox	proportional	hazanl	model	is	defined	as	h(t	I	z)	=	h0(t)	exp	{g(j3,	z)	)	fo(t)/	P(T	>	t).	There	is	an	even	greater	range	of	viewpoints	in	the
statistical	community	from	people	who	consider	all	statistical	statements	as	purely	subjective	to	ones	who	restrict	the	use	of	such	models	to	situations	such	as	that	of	the	inspection	example	in	which	the	distribution	of	(J	has	an	objective	interpretation	in	terms	of	frequencies.	Suppose	that	Y,	which	is	not	observable,	has	a	distribution	given	(J	=	8.	"""'
One	sample:	10000	Simulations;	Chi-square	'-	data	�---�---�----�-	-�----Tl	1	0:.	An	estimate	such	that	Biase	(0)	=	0	is	called	unbiased.	Example	4.1.2.	Mendel's	Peas.	,	Xn)	=	[(1	/n)	L	X;,	[1/(n	-	1)]	L(X,	i=l	i=	1	-	X)2	]	,	where	X	=	{1	/n)	L�	1	Xi	.	Find	an	increasing	function	Q(t)	such	that	the	regression	survival	function	of	Y'	=	Q(Y)	does	not	depend	on
ho(t).	It	can	also	be	thought	of	as	a	limiting	case	in	which	N	=	oo,	so	that	sampling	with	replacement	replaces	sampling	without.	When	dependence	on	8	has	to	be	observed,	we	shall	denote	the	distribution	corresponding	to	any	particular	parameter	value	()	by	Po	.	A	prior	for	which	the	Bayes	risk	of	the	Bayes	procedure	equals	the	lower	value	of	the
game	is	called	least	favorable.	If	we	suppose	there	is	a	single	numerical	measure	of	performance	of	the	drugs	and	the	difference	in	performance	of	the	drugs	for	any	given	patient	is	a	constant	irrespective	of	the	patien4	then	our	attention	naturally	focuses	on	estimating	this	constant	If,	however,	this	difference	depends	on	the	patient	in	a	complex
manner	(the	effect	of	each	drug	is	complex),	we	have	to	formulate	a	relevant	measure	of	the	difference	in	performance	of	the	drugs	and	decide	how	to	estimate	this	measure.	,	Yn	)	such	that	P[t_	::;	Y	::;	�	1	-	a).	is	unknown	and	Xi	-	f.J,	is	symmetrically	distributed	about	0.	Asymptotic	theory	for	estimates	and	tests	If	(Z1	,	Y1	)	,	.	(beta,	il(	VB,	1),	density)
(e)	f(x,	8)	=	(x/82	)	exp{	-x2/282	},	x	>	0;	8	>	0.	(We	write	U[a,	b]	to	make	p(a)	=	p(b)	=	(b	-	a)	1	rather	than	0.)	'	-	14,	If	n	extsts.	0,	i'	!	'	'	1	l	i	•	q(y	l	x)	�	(	;	)	B(r	+x+y,	s	+	n	-	x	+	m	-	y)/B(r	+x,	s	+	n	-	x)	where	B(	·,	·)	denotes	the	beta	function.	�	0,	ifTn	<	0	H	:	a2	<	a�	versus	K	:	a2	>	a5.	l	6)	to	the	random	variables	We	get	and	8f8Blogp(X,	B)	T(X).
That	a	treatment	has	no	effect	is	easier	to	specify	than	what	its	effect	is;	see,	for	instance,	our	discussion	of	constant	treatment	effect	in	Example	1.1.3.	In	science	generally	a	theory	typically	closely	specifies	the	type	of	distribution	P	of	the	data	X	as,	say,	P	=	Po,	B	E	8o.	(3.5.2)	Here	h	is	the	density	of	the	gross	errors	and	.\	is	the	probability	of	making
a	gross	error.	The	Hodges-Lehmann	(location)	estimate	XHL	is	defined	to	be	the	median	of	the	1n(n	+	1)	pairwise	averages	�(Xi	+	xj).	1	suppose	returning	a	shipment	with	()	<	00	defectives	results	in	a	penalty	of	s	dol	lars	whereas	every	defective	item	sold	results	in	an	appropriate	loss	function	is	l(8,	1)	l	(8	,	1	)	l(8	,	0)	r	dollar	replacement	cost.	,	ad)
are	vectors,	examples	of	loss	functions	are	l(O,	a)	l(O,	a)	1(0,	a)	1	)a;	-	v;	)2	=	squared	Euclidean	distance(d	2	d	�	2.:	[a;	-	v;	f	=	absolute	distance/d	max{lai	-	vi	l,j	=	1,	.	Show	that	if	Mu	(t)	is	well	defined	in	a	neighborhood	of	zero	then	=	I	'	Mu	(t)	=	1	+	L	/	II	p=	l	where	J.Li1	···i,.	(a)	Write	the	distribution	of	Y1	,	.	Apply	the	factorization	theorem.	Thus,
suppose	we	observe	S	=	EXi,	the	number	of	recoveries	among	the	n	randomly	selected	patients	who	have	been	administered	the	new	drug.	is	a	scale	parameter	for	the	r(p,	.\)	family.	First	consider	situation	(a),	which	we	refer	to	as:	Example	1.1.1.	Samp	ling	Insp	ection.	l5.8)	implies	(A.	The	interpretation	of	l(	P,	a),	or	I	(0,	a)	if	P	is	parametrized,	is	the
nonnegative	loss	incurred	by	the	statistician	if	he	or	she	takes	action	a	and	the	true	..state	of	Nature,"	that	is,	the	probability	distribution	producing	the	data.	,A6	when	8	log	p(x,	8)	,	and	Q	=	P.	(c)	An	experimenter	makes	n	independent	detenninations	of	the	value	of	a	physical	constant	p,.	To	specify	this	set	more	closely	the	critical	constant	treatment
effect	assumption	is	often	made.	Let	x1	and	x2	be	the	observed	values	of	X1	and	X2	and	write	x	=	(x1	+	xz)/2	and	t,	=	(x1	-	x2)/2.	Now	suppose	we	want	to	estimate	B(P*)	Xn)	knowing	�	Xn	)	will	continue	to	be	a	that	B(Xi	,	.	To	choose	a	prior	1T,	we	need	a	class	of	distributions	that	concentrate	on	the	interval	(0,	1).	A	placebo	is	a	substance	such	as
water	tJlat	is	expected	to	have	no	effect	on	the	disease	and	is	used	to	correct	for	the	well-documented	placebo	effect,	that	is,	patients	improve	even	if	they	only	think	they	are	being	treated.We	let	they's	denote	the	responses	of	subjects	given	a	new	drug	or	treatment	that	is	being	evaluated	by	comparing	its	effect	with	that	of	the	placebo.	Would	you
accept	or	reject	the	hypothesis	of	independence	at	the	0.05	level	(a)	using	the	x	2	test	with	approximate	critical	value?	These	examples	motivate	the	decision	theoretic	framework:	We	need	to	(I)	clarify	the	objectives	of	a	study,	(2)	point	to	what	the	different	possible	actions	are,	(3)	provide	assessments	of	risk,	accuracy,	and	reliability	of	statistical
procedures,	(4)	provide	guidance	in	the	choice	of	procedures	for	analyzing	outcomes	of	experi	ments.	Because	D	Fe(t)	is	a	distribution	function,	1	-	Fo(t)	is	decreasing	in	t.	However	if,	say,	J.£1	=	p,0	+	Ado,	)..	,	Xn	be	a	sample	from	some	continuous	distribution	Fwith	density	J,	which	is	unknown.	We	want	to	study	of	Example	4.9.3.	if	n�	,	n2	---+	oo.
Let	q(z	j	y)	denote	the	conditional	frequency	function	of	Z	given	Y	y	.	Variance	Stabilizing	Transfo111U1tion	for	the	Binomial	Distribution.	2	16.	1	(b)	Check	that	your	test	statistic	has	greater	expected	value	under	K	than	under	H.	Response	measurements	are	taken	on	the	treated	and	control	members	of	each	pair.	In	statistics,	the	gamma	density	9p,
>..	Use	Theorems	1.6.2	and	1.6.3	to	obtain	moment-generating	functions	for	the	sufficient	statistics	when	sampling	from	the	following	distributions.	p(x	I	B)	the	posterior	density	,	{N,	X1,	Chapter	1	.,-(B	I	x).	Mx(s)	=	L	k!	k=O	are	(A.l2.3)	460	I	i	I	I	A	Review	of	Basic:	Probability	Theory	A.l2.4	The	moment	generuting	function	.Hx	has	derivatives	of	all
orders	at	:;	dk	:\J,.	Some	of	the	material	in	this	appendix,	as	well	as	extensions,	can	be	found	in	Anderson	(	1	958),	Billingsley	(	1995),	Brei	man	(	I	%8),	Chung	(	1	978),	Dempster	(	1	969),	Feller	(1971),	Loeve	(1977),	and	Rao	(	1	973).	Note	that	Sf	V	(U2,	V2),	.	Find	E(X	I	Y)	when	X	•	=	I	Z).	then	is	a	subset	of	X	with	probability	at	least	P[X	E	A(v0))	>	1	-
a	for	all	P	E	Pv,	ifand	only	if	S(X)	is	a	1	-	a	confidence	region	for	v.	P,	�·	(X)	<	8']	<	Po	]B(X)	:S	8'].	•	i	•	•	!•	I	[!/!	(X;	-	On)	-	A(On)]	!:,	N(O,	1)	�	(O)	c	..fti(On	-	0)	�	N	Hint:	P(	..jii(On	-	0))	<	t)	=	P(O	<	On)	(d)	Assume	part	(c)	and	A6.	Kjell	Doksum	1976	'	!	•	Peter	J.	,	Xn)T	and	Y	�	(Y1	,	.	we	invert	the	family	of	UMP	level	a	tests	of	H	:	A	�	Ao	versus	K	:
>.	,	Xk	be	independent	Xi	N(Bi,	a2)	where	either	a2	=	a5	(known)	and	Bt,	.	see	Birkhoff	and	B.l0.1.3	If	A	is	spd,	so	is	A	-	I	.	.'	•	'	I	I	and	II,"	Ann.	•	(8.2.	1	1)	forO	<	x	<	1,	where	B(r,	s)	=	[r(r)r(s)]/[r(r+s)]	is	the	betafunction.	We	give	a	few	examples	of	situations	of	the	foregoing	type	in	which	it	is	used,	and	its	main	properties.	The	basic	global
comparison	criteria	Bayes	and	minimax	are	presented	as	well	as	a	discussion	of	optimality	by	restriction	and	notions	of	admissibility.	Z	]	X	]	,	g(	t2Z	>	(Markov'	s	>	g(t	]	X	]	)	inequality),	Z	=	X	g(t)	est	s	>	(Bernstein's	inequality,	Proof	of	(A.15.4).	We	may	want	to	assume	that	B	has	a	density	with	maximum	value	at	0	such	as	that	drawn	with	a	dotted
line	in	Figure	B.2.2.	Or	else	we	may	think	that	1r(	B)	concentrates	its	mass	near	a	small	number,	say	0.05.	k	=	1,	.	The	progeny	exhibited	approximately	the	expected	ratio	of	one	homozygous	dominant	to	two	heterozygous	dominants	(to	one	recessive).	How	we	use	statistics	in	esti	mation	and	other	decision	procedures	is	the	subject	of	the	next	section.
Statistical	methods	for	models	of	this	kind	are	given	in	Volume	2.	l	0.2).	Use	calculus.	"""	-	That	is,	how	do	we	find	a	function	B(X)	of	the	vector	observation	X	that	in	some	sense	"is	close"	to	the	unknown	8?	We	illustrate	such	simulations	for	the	preceding	t	tests	by	generating	data	from	the	X�	distribution	M	times	independently,	each	time	com	puting
the	value	of	the	t	statistics	and	then	giving	the	proportion	of	times	out	of	M	that	the	t	statistics	exceed	the	critical	values	from	the	t	table.	(4	.8.3)	To	consider	the	frequentist	properties	of	the	Bayesian	prediction	interval	(	4.8.3)	we	com	pute	its	probability	limit	under	the	assumption	that	XI	,	.	We	can	think	of	the	test	statistic	=	=	•	•	•	·	2	log	.X.	�
Show	that	the	sample	median	X	is	an	empirical	plug-in	estimate	of	the	population	median	v.	The	following	result,	which	follows	from	Chebychev's	inequality,	is	a	useful	general	ization	of	Bernoulli's	law.	is	the	standard	normal	distribution	function	and	_	n	r	J.l	=	n	+	r	+	s	x	+	n	+	r	+	s	'	_	_2	li(l	-	li)	=	a	n	+r+s'	Hint:	Let	/3(a,	b)	denote	the	posterior
distribution.	This	selection	is	based	on	experience	with	previous	similar	experiments	(cf.	J.,	The	Foundations	of	Statistics,	J.	Note	first	that,	if	A	is	symmetric,	(B.!	0.	F.	,......	=	r1,	5.	It	follows	that	all	the	properties	of	the	expectation	given	in	(A.	Consider	the	following	competitor	to	X:	-	Bn	I	-	0	if	lXI	<	n-1;4	X	if	l	X	I	>	n-1/4	(5.4.37)	We	can	interpret	this
estimate	as	first	testing	H	:	()	0	using	the	test	"Reject	iff	JXI	>	n-1/4"	and	using	X	as	our	estimate	if	the	test	rejects	and	0	as	our	estimate	otherwise.	Other	novel	features	of	this	chapter	include	a	detailed	analysis	including	proofs	of	convergence	of	a	standard	but	slow	algorithm	for	computing	MLEs	in	multiparameter	ex	ponential	families	and	ail
introduction	to	the	EM	algorithm,	one	of	the	main	ingredients	of	most	modem	algorithms	for	inference.	(b)	Deduce	that	the	random	variables	X	and	Y	in	Problem	B.l.8(c)	(i)	have	correlation	0	although	they	are	not	independent.	,	Xn	are	i.i.d.	as	X	"'	F,	where	F	is	a	continuous	dis	tribution	function	with	positive	density	f	on	(	a	,	b),	-	oo	:S:	a	<	b	:S:	oo	.
Hint:	From	continuity	of	p,	(i)	and	the	dominated	convergence	theorem,	.	As	is	typical,	we	call	Y	1	a	"success"	and	Y	=	0	a	"failure."	We	assume	that	the	distribution	of	the	response	Y	depends	on	the	known	covariate	vector	z	T	.	N(Jl.I	,Ji-2,	af,	a�	,	p)	distribution.	If	we	take	a	sample	from	a	member	of	one	of	these	families,	then	the	sample	mean	X	will
be	approximately	normally	distributed	with	variance	cr2	/n	depending	on	the	parameters	indexing	the	family	considered.	(i.e.,	J	is	an	unbiased	estimate	of	f.J,).	1	1	)	For	a	proof.	,	en	,	Using	conditional	probability	theory	and	ei	=	/3ei-I	+	f.i,	we	have	.	23,	1443-1473	(	1995).	Let	X	have	a	N(	0,	1)	distribution.	r	Hint:	Use	Problem	B.3.7	for	r	odd.	The
distribution	of	S	is	called	the	F	distribution	with	k	and	m	degrees	offreedom.	(2)	We	can	derive	methods	of	extracting	useful	information	from	data	and,	in	particular,	give	methods	that	assess	the	generalizability	of	experimental	results.	This	can	be	made	precise	for	stochastic	GLMs	obtained	by	conditioning	on	Z1	,	.	Testing	and	Confidence	Regi	ons
250	C	h	a	pter	4	We	begin	by	finding	a	uniformly	most	accurate	level	(	1	-	a)	UCB	).	The	key	feature	of	situations	in	which	.Co(Tn)	=	.C0	for	()	E	80	is	usually	invariance	under	the	action	of	a	group	of	transformations.	It	is	not	our	goal	in	this	book	to	enter	seriously	into	questions	that	are	the	subject	of	textbooks	in	numerical	analysis.	We	present	an
elementary	discussion	of	Bayesian	models,	introduce	the	notions	ofprior	and	posterior	distributions	and	give	Bayes	rule.	(g	l	(y	))l	(B2A)	the	Jacobian	of	g	is	just	its	derivative	and	the	requirements	(i)	and	(iii)	that	g'	be	continuous	and	nonvanishing	imply	that	monotone	and,	hence,	satisfies	(ii).	serious	error	in	Problem	2.2.5	was	discovered	by	A	F.	The
shape	ofF	is	represented	by	the	equivalence	{F((·	-	a)fb)	b	>	0,	a	E	R).	If	X	is	normally	distributed,	Cj	=	0	for	j	>	3.	Here	is	an	example.	Show	that	the	second-	and	higher-degree	cumulants	(where	p	=	�=1	ii	invariant	under	shift;	thus.	In	most	studies	we	are	interested	in	studying	relations	between	responses	and	several	other	variables	not	just
treatment	or	control	as	in	Example	1.1.3.	This	is	the	stage	for	the	following.	}.	We	feel	such	an	introduction	should	at	least	do	the	following:	(1)	Describe	the	basic	concepts	of	mathematical	statistics	indicating	the	relation	of	theory	to	practice.	or	(3)	market	research	where	a	potential	customer	either	desires	a	new	product	(Y	=	1)	or	does	not	(Y	0)	.	,
B.)	,	O	<	B;	<	1,	1	<	j	<	k.	1	5	.	We	view	statistical	models	as	useful	tools	for	learning	from	the	outcomes	of	experiments	and	studies.	10.1	Symmetric	Matrices	We	establish	some	of	the	results	on	symmetric	nonnegative	definite	matrices	used	in	the	text	and	8.6.	Recall	Apxp	is	symmetric	iff	A	=	AT.	Then	the	posterior	distribution	of	ll	is	by	(	1	.2.8)	8	I	..
(oi	1	x	=	o)	=	,	..(e,	1	x	=	o)	=	.	I	)	and	(A.4.5).	406	I	nference	in	t	h	e	M	u	ltipa	ra	meter	Case	C	h	a	pter	6	A	A	The	entries	in	the	boxes	of	the	table	indicate	the	number	of	individuals	in	the	sample	who	belong	to	the	categories	of	the	appropriate	row	and	column.	,	(Zn	,	Yn	)	has	density	p	(z,	y,	{3)	=	TI	h(y;)qo	(z;)	{	t,	[(zf	exp	{3)	y;	-	A0(zf	{3)	]	}	.	On	the
other	hand,	once	a	study	is	carried	out	we	would	probably	want	not	only	to	estimate	�	but	also	know	how	reliable	our	estimate	is.	In	fact,	when	EY2	<	oo,	E(Y	-	c)2	�	Var	Y	+	(c	-	p)	2	.	'	'	'	'	'	UNIFORMLY	MOST	ACCURATE	CONFIDENCE	BOUNDS	In	our	discussion	of	confidence	bounds	and	intervals	so	far	we	have	not	taken	their	accuracy	into
account.	Problem	Set	1	(PDF)	Problem	Set	2	(PDF)	Problem	Set	3	(PDF)	Problem	Set	4	(PDF)	Problem	Set	5	(PDF)	Problem	Set	6	(PDF)	Problem	Set	7	(PDF)	Problem	Set	8	(PDF)	Problem	Set	9	(PDF)	Mathematical	Statistics:	Basic	Ideas	and	Selected	Topics,	Volume	I,	Second	Edition	presents	fundamental,	classical	statistical	concepts	at	the	doctorate
level.	Change	other	coordinates	accordingly.	The	joint	distribution	of	Z	and	Y	can	be	college	admissions	situation,	and	Y	his	calculated	(or	rather	well	estimated)	from	the	records	of	previous	years	that	the	admissions	I	'	officer	has	at	his	disposal.	�	•	14.	We	also	expect	to	discuss	classification	and	model	selection	using	the	elementary	theory	of
empirical	pro	cesses.	More	generally,	if	T1	and	T2	are	any	two	statistics	such	that	71	(x)	=	T1	(y)	if	and	only	if	T2	(x)	=	T2(y),	then	Tt	and	T2	provide	the	same	information	and	achieve	the	same	reduction	of	the	data.	Hint:	By	Problem	B.2.12,	So	(T)	has	a	U(O,	I)	distribution;	thus,	-	log	S0(T)	has	an	exponential	distribution.	denoted	by	Corr(X1,	X2).	J	=l
)r)	�	=	"	·	4.	A.16.2	Formally,	let	(N(t)}.	Xn)·	In	fact,	we	can	show	that	X(n)	is	sufficient.	If	we	let	f(Yi	I	zi)	denote	the	density	of	Yi	for	a	subject	with	covariate	vector	zi,	then	the	model	is	n	(a)	P(Yt,	·	·	·	,	yn)	�	IJ	f(Yi	I	Zi	)	·	i=l	If	we	let	J.L(z)	denote	the	expected	value	of	a	response	with	given	covariate	vector	z,	then	we	can	write,	(b)	where	Ei	=	Yi	-	E	(
Yi).	We	next	define	and	examine	the	sensitivity	curve	in	the	context	of	the	Gaussian	location	model,	Example	1.1.2,	and	then	more	generally.	I	Note	that	Theorem	5.4.3	generalizes	Example	5.4.1	once	we	identify	'1/J(x,	B)	with	T(x)	-	A'(B).	The	complete	result	is	established	for	instance	by	Lehmann	(1997,	Section	2.6).	This	class	of	distributions	has	the
remarkable	property	that	the	resulting	posterior	distributions	arc	again	beta	distributions.	Note	that	these	tests	can	be	carried	out	without	knowing	the	density	qo	of	z	.	,	{3p)T	of	unknowns.	R(8,6)	sPo[X	>	k]	+	rN8Po	[X	<	kJ,	8	<	8o	rN8Po[X	<	k],	8	>	8o.	Show	that	the	a	trimmed	mean	Xo.	is	an	empirical	plug-in	estimate	of	!'a	�	(1	-	2a)	-1	}"['"	Xl-
xdF(x).	l4)	I	I	If	Xi	and	Xf	are	distributed	as	X1	and	X2	and	are	independent	of	X1	and	X2,	then	�	Cov(X1	,	X2)	=	E(X1	-	x;	)(X,	-	x;	).	=	0	to	terms	(b)	Use	(a)	to	justify	the	approximation	•	17.	What	is	observed,	however,	is	not	X	but	S	where	S;	s,	xi,	1	<	i	<	m	(€i1	+	€iz	,	€i3	),	m	+	1	:S	i	q(s,	Bold	)-	(2.4.13)	Equality	holds	in	(2.4.	13)	iff	the	conditional
distribution	of	X	given	S(X)	=	s	is	the	same	for	Bnew	as	for	Bold	and	Bnew	maximizes	J(B	I	Bold	l·	Proof.	The	decision	theoretic	framework	accommodates	by	adding	a	component	reflecting	this.	,	Xn	are	observable	and	we	want	to	predict	Xn+t·	Give	a	level	(1	-	a)	prediction	interval	for	Xn+l	·	Hint:	XdB	has	a	�	distribution	and	nXn+t!	E�	1	xi	has	an
F2,2n	distribution.	and	T3	=	2	(Y	(a)	Why	can	you	conclude	that	T1	has	a	smaller	MSE	(mean	square	error)	than	T2	?	Thus,	if	we	have	three	air	conditioners,	there	are	3!	=	6	possible	rankings,	•	.	Notation.	Chapman	and	Hall	/	CRC,	2015.	Figure	5.3.1	shows	that	for	the	one-sample	t	test,	when	o:	=	0.05,	the	asymptotic	result	gives	a	good
approximation	when	n	>	10	1	·5	32,	and	the	true	distribution	F	is	x�	with	d	2::	10.	Begin	by	specifying	a	small	num	ber	a	>	0	such	that	probabilities	of	type	I	error	greater	than	a	arc	undesirable.	1	7	Data,	Models,	Parameters,	and	Statistics	Dual	to	the	notion	of	a	parametrization,	a	map	from	some	e	to	P.	A	college	admissions	officer	has	available	the
College	Board	scores	at	entrance	and	first-year	grade	point	averages	of	freshman	classes	for	a	period	of	several	years.	Let	X	have	a	binomial,	B(n,p),	distribution.	The	extent	to	which	holes	in	the	discussion	can	be	patched	and	where	patches	can	be	found	should	be	clearly	indicated.	(a)	Suppose	for	all	a,	b,	c,	(1)	Iog	pabc	=	/-Lac	+	Vbc	where	-oo	<	f.L,
v	<	oo.	::;	n	=	Further	qualitative	features	of	these	bounds	and	relations	to	approximation	(5.1.8)	are	given	in	Problem	5.1.4.	Similarly,	the	celebrated	Berry-Esseen	bound	(A.	=	(A.	In	this	case,	J(B	I	Bo)	=	Eo	(	(B	-	Bo)TT(X)	-	(A(	B)	-	A(Bo))	I	S(X)	=	s}	-	(B	-	Bof	Ee,	(T(X)	I	S(X)	=	y)	-	(A(B)	-	A(Bo))	,	Part	(a)	follows.	The	main	difference	that	our	model
exhibits	from	the	usual	probability	model	is	that	NO	is	unknown	and,	in	principle,	can	take	on	any	value	between	0	and	N.	Give	p-values	for	the	cases.	There	is	a	statistic	T	that	"tends"	to	be	small,	if	H	is	true,	and	large,	if	H	is	false.	Let	Yi	be	independent	binomial,	B(n;,	.\;),	1	<	i	<	n.	For	the	first	volume	of	the	second	edition	we	would	like	to	add
thanks	to	new	col	leagues,	particularly	Jianging	Fan,	Michael	Jordan,	Jianhua	Huang,	Ying	Qing	Chen,	and	Carl	Spruill	and	the	many	students	who	were	guinea	pigs	in	the	basic	theory	course	at	Berkeley.	Researchers	have	then	sought	procedures	that	improve	all	others	within	the	class.	•	WALLACE,	C.	we	have	E	[	(Y	-	g(Z))	2	I	Z	�	z]	�	E[(Y	-	g(z	))	2	I
Z	�	z].	In	cluded	are	asymptotic	normality	of	maximum	likelihood	estimates,	inference	in	the	general	linear	model,	Wilks	theorem	on	the	asymptotic	distribution	of	the	likelihood	ratio	test.	The	risk	points	(	R(Bt,	oi	),	R(O,o;))	are	given	in	Table	1.3.4	and	graphed	in	Figure	1.3.2	for	i	=	1,	.	1.5.	(b)	Suppose	we	measure	the	difference	between	the	effects
of	A	and	B	by	�	the	dif	ference	between	the	quantiles	of	X	and	-X,	that	is,	vp(p)	=	�	[xP	+	x1_	PJ,	where	p	=	F(x).	we	now	define	the	elements	of	a	statistical	model.	Then	=	�	P[IZ	+	..fiiBI	<	n1i4]	(n1/4	-	.,fiiB)	-	(	-n1	i4	-	.,fiiB	).	Assume	that	(}h	B2	vary	independently,	lh	E	81,	82	E	82	and	that	the	set	S	{x	:	p(x,	B)	>	0}	does	not	depend	on	B.	In	this
section	we	will	consider	Bernoulli	responses	Y	that	can	only	take	on	the	values	0	and	1.	Decide	I'	<	l'o	ifT	<	-z(t	-	ia).	In	this	parametric	case,	how	do	we	select	reasonable	estimates	for	8	itself?	respectively,	(Xo,	Yo)	is	in	the	interior	of	S	x	T,	(a)	Show	that	a	necessary	condition	for	(xo,	y0)	to	be	a	saddle	point	is	that,	representing	X	=	(x1,	.	Show	that	if
X1	,	.	lO.	JI�c2,	xi	and	x�	but	with	probabilities	�	-	�,	�	and	�	where	(c)	Let	(X,'	Y,	)	have	anN,	(e,'	e,,	u1o'	"�o.	For	r	even	set	m	=	r/2	and	note	that	because	Y	=	](X	-	J,t)/o-]2	has	a	xi	distribution,	we	can	find	E(Y'")	from	Problem	8.2.4.	Now	use	E(X	-	J,t)'	=	o-r	E(Ym	),	9.	(b)	Show	that	if	n	=	2	the	most	powerful	level	.0196	test	rejects	if,	and	only	if,
two	5's	are	obtained.	Show	that	for	a	sufficiently	large	the	likelihood	function	has	local	maxima	between	0	and	1	and	between	p	and	a.	For	instance,	if	we	assume	the	covariates	in	logistic	regression	with	canonical	link	to	be	stochastic,	we	obtain	=	If	we	wish	to	test	hypotheses	such	as	H	:	/31	=	·	·	·	=	/3d	=	0,	d	<	p,	we	can	calculate	i=	l	where	{3	H	is
the	(p	x	1	)	MLE	for	the	GLM	with	f3�x	l	(	0,	.	Hint:	Without	loss	of	generality,	take	cr�	�	cr�	�	1.	DEGRoOT,	M.	..,n-1	x	<	x(1	)	1,	X	>	x(n)·	�	Show	that	for	fixed	x,	F,((x	-	x	)fu)	converges	in	probability	to	F(x).	Example	4.3.2	(Example	4.1.3	continued).	exist	vectors	ej,	Jeil	1	such	that	(b)	The	=	Appendix	B	That	is,	there	(B.l0.3)	A	is	also	snd,	all	the
>...i	are	nonnegative.	WIJSMAN,	R.	Alternatively,	i	f	Y	has	a	second	moment,	we	may	select	F	as	being	the	unique	member	of	the	family	Fs	having	2	Var	Y	=	1	and	then	X	"'	F;	==?	(iii)	Z	has	a	uniform	U(O,	1)	distribution,	Y	(iv)	Z	has	a	U	(	-1,	1)	distribution,	Y	(v)	Z	has	a	U(-1,	1)	distribution,	Y	=	Z2	=	Z2.	_	n-	vn[h(X	)	-	ho]	s[h(	l	)(X)[	'	!	'	'	·	.
Fortunately,	the	methods	needed	for	its	analysis	are	much	the	same	as	those	appropriate	for	the	situation	of	Example	1.1.3	when	F,	G	are	assumed	arbitrary.	an	,	'	•	462	A	Review	of	Basic	Probability	Theory	If	X	has	an	H(D,	N,	n)	distribution,	then	D	E(X)	=	n	'	Var	X	=	N	D	nN	(	D	!N	)	N-n	N_	1.	Then,	by	(1.2.8),	the	posterior	probabilities	are	r;p(x	I	O;)
1	P[9	�	0;	I	X	�	x]	�	Ej'lrj	p(x	I	e,)	and,	thus,	T	(aj	I	X)	=	E;w;j7r;p(x	I	0;)	.	,	Yn	be	independent	responses	and	suppose	the	distribution	of	Yi	depends	on	a	covariate	vector	zi.	KENDALL,	M.	1	26	.253	.385	.524	.674	.842	1	.036	1.282	.09	.08	.07	.06	.05	.04	.03	.025	1.341	1.405	1.476	1	.555	1	.645	1.751	1.881	1.960	.02	.01	.005	.001	.0005	.0001	.00005
.0000	1	2.054	2.326	2.576	3.090	3.291	3.719	3.891	4.265	Entries	in	the	top	row	are	areas	to	the	right	of	values	in	the	second	row.	Usually,	the	situation	is	less	simple.	Generally,	J1	and	v	are	regarded	as	centers	of	the	distribution	F.	We	give	explicitly	the	construction	of	exact	upper	and	lower	confidence	bounds	and	intervals	for	the	parameter	in	the
binomial	distribution.	Let	Yi	XI	-	x2	and	y2	=	x2.	(	s	)	�Is�-	-	---cc	=	Appendix	A	=	0	and	E(X	'	).	Let	Example	1.1.5.	X	1	,	.	Show	that	if	m	=	.\k	for	some	.\	>	0	and	+	�(	J2X	y'2ri}	(c)	Compare	the	approximation	of	(b)	with	the	central	limit	approximation	P[Sn	<	x]	=	.P((x	-	n)/ffn)	and	the	exact	values	of	P[Sn	<	x]	from	the	x'	table	for	x	=	xo.go,	X	=
XQ.99,	n	=	5,	10,	25.	1	2,	given	x1	,	,	Xn,	l:	(xi	-	p,0	)	2	.	l	.3).	B	Then	(3.4.10)	•	and,	thus,	I(	B)	�	Var	Proof.	I	-	(xfc)-8,	x	>	F	(x	O)	,	c	x	0	and	c	=	2,	000	is	the	minimum	monthly	salary	for	state	workers.	V.,	Introduction	to	Probability	and	Statistics	from	a	Bayesian	Point	of	View,	Part	I:	Probability;	Part	II:	Inference,	Cambridge	University	Press,	London,
1965.	This	assertion	may	be	proved	as	follows.	N(O,	ho	the	natural	test	statistic	is	T.	[f	Y	is	real,	and	z	E	Z,	A	{a	:	a	is	a	function	from	Z	to	R}	with	a(z)	representing	the	prediction	we	would	make	if	the	new	unobserved	Y	had	covariate	value	z.	If	X	and	Y	are	independent,	then	c;(X	+	Y)	=	c;	(X)	+	c1	(Y).	>	1	-	,\,	the	interval	(4	9	3)	has	asymptotic
probability	,	.	A	second	application	occurs	for	models	where	the	families	of	distribution	for	which	variance	stabilizing	transformations	exist	are	used	as	building	blocks	of	larger	models.	BOHLMANN,	H.,	Mathematical	Methods	in	Risk	Theory	Heidelberg:	Springer	Verlag,	1970.	This	is	the	critical	value	we	shall	use,	if	our	test	statistic	is	T	and	we	want
level	a.	2nd	edition.	Let	p1	denote	the	N(O,	0,	1	,	1,	0)	density	and	let	P2	be	the	N(O,	0,	1,	1,	p)	density.	Measurement	Model	with	Autoregressive	Errors.	Show	that,	however,	(ii)	Var	(!	logp(X,	)	8)	(iii)	2X	is	unbiased	for	"	'	2.	F�x.")	=	D(Fu,F1_u),	and	by	I	-	a).	Suppose	that	in	Example	1.3.5,	a	new	buyer	makes	a	bid	and	the	loss	function	is	changed	to
8\a	a,	a,	a,	a3	0	12	7	I	4	6	o,	(a)	Compute	and	plot	the	risk	points	in	this	case	for	each	rule	(h,	.	,	(Zn	,	Yn	)	can	be	viewed	as	a	sample	from	a	population	and	the	link	is	canonical,	the	theory	of	Sections	6.2	and	6.3	applies	straightforwardly	in	view	of	the	gen	eral	smoothness	properties	of	canonical	exponential	families.	1	0.	or	repair	it;	we	could	drill	for



oil,	sell	the	location,	or	sell	partial	rights�	we	could	operate,	administer	drugs,	or	wait	and	see.	For	some	specified	vo,	H	may	be	accepted,	for	other	specified	vo,	H	may	be	rejected.	,	Xn)	is	given	by	(see	(A.l6.4)),	.	Let	us	call	the	possible	categories	or	states	of	the	first	characteristic	A	and	A	and	of	the	second	B	and	B.	If	(}	and	(}*	are	two	competing
level	both	very	likely	to	fall	below	the	true	B.	An	individual	either	is	or	is	not	inoculated	against	a	disease;	is	or	is	not	a	smoker;	is	male	or	female;	and	so	on.	(a)	Show	that	if	F	and	G	are	N(/Lt	afl	and	N(!L2	,	aD,	respectively,	then	the	LR	test	of	H	:	uf	=	a�	versus	K	:	af	#	a�	is	based	on	the	statistic	sT	/s�,	where	sT	=	(nt	1)-	t	2::7'	1	(X;	X)	"	s�	=	(n2
1)-	1	2::7'	1	(1-j	Y)"	.	lf8	<	Bo,	Po[Bn	>	en(,	Oo)]	�	0.	,	Yn·	The	only	truly	nonparametric	but	useless	model	for	X	E	R	n	is	to	assume	that	its	(joint)	distribution	can	be	anything.	lfwe	put	X1	=	X,	=	X	in	(A.	,	z(k)}	is	RP	(c)	P[Z	1	�	zUI]	>	0	for	all	j.	Assume	that	:	{}	<	0	versus	K	:	8	>	0.	Most	simply	we	would	sample	n	patients,	administer	the	new	drug,
and	then	base	our	decision	on	the	observed	sample	X	=	(X1	,	.	Show	that	(6.3.19)	holds.	,	Yn2	be	i.i.d.	C,	and	suppose	the	X's	and	Y's	are	independent.	But	cr	2	�	Var(X1	)	evidently	is	and	so	is	I'	+	t..	1	'	85	Section	1.	After	Bellman	(	1	%0,	p.	Thus,	with	t1	=	2::	x,	and	t2	=	2::	xf,	Equation	(2.	q(B)	the	conditions	of	Theorem	3.4.1	hold	and	T	an	unbiased
CoroUary	Suppose	estimate	of	B.	be	i.i.d.	!	fo	(	x�r	)	,	a	>	0,	J.l	E	R,	and	assume	for	w	W11	>	0	so	that	w	is	strictly	convex,	w	(±oo	)	=	oo.	1	1	6.25	7.81	9.35	9.84	1	1	.34	12.84	14.32	16.27	17.73	4	5.39	7.78	9.49	1	1	.	Y	-	ll-2)	has	a	x�	distribution.	However,	by	giving	()	a	distribution	purely	as	a	theoretical	tool	to	which	no	subjective	significance	is
attached,	we	can	obtain	important	and	useful	results	and	insights.	Suppose	l(B;	,	i)	=	O,	l(B;	,	j)	=	w;;	>	O,	i,j	=	O,	I	,	i	f	j.	167.	,	Xn	is	a	sample	from	a	population	with	mean	Jl-,	variance	a2	,	and	third	central	moment	Jl-3	.	Notes	for	Section	A.l4	(	I	)	It	may	be	shown	that	one	only	needs	the	existence	of	the	derivative	g'	at	b	for	(A.l4.17)	to	hold.	Example
4.5.2.	Suppose	X1	,	.	Statlab:	An	Empirical	Introduction	to	Statistics.	A.15.12	The	first	of	these	results	reflects	the	intuitively	obvious	fact	that	if	the	populations	sampled	are	large	and	the	samples	are	comparatively	small,	sampling	with	and	without	replacement	leads	to	approximately	the	same	probability	distribution.	=	Z2	if	Z2	;.	7	+	I	+	2	.	Show	that
the	maximum	Jikelihood	estimate	of	8	based	on	Y1	,	,	Yn	.lS	•	-	B(Y)	�	""	•	.	(a)	Show	that	the	conditional	distribution	of	X	M(k,	1/n,	.	6	2	•	8	•	0	5	0	10	5	R(B1	,	6,)	Figure	1,3,2.	,	Zn	in	the	sample	(Z1	,	Y1	)	,	.	'	''	I	!	86	9.	'	I	'	(c)	Let	x•	be	a	specified	number	with	0	<	F(x')	<	I.	ROSENBLATT,	Statistical	Analysis	of	Stationary	Time	Series	New	York:	Wi‐
ley,	1957.	Given	f	continuous	on	(a,	b),	f	i	strictly,	f(a+)	<	0	<	f(b-),	then,	by	the	intermediate	value	theorem,	there	exists	unique	x*c::	(a,	b)	such	that	f(x*)	=	0.	(t	[1	-	1�',"�fJ	l).	(ii)	are	uncorrelated.	,	Xn).	The	rank	of	A	is	the	number	of	nonzero	eigenvalues.	n	'	'	(c)	Conclude	that	with	probability	tending	to	1,	II.	3	.	1	we	considered	linear	models	that
are	appropriate	for	analyzing	continuous	responses	{Yi}	that	are,	perhaps	after	a	transformation,	approximately	normally	distributed	and	whose	means	are	modeled	as	J-li	=	E;=	I	Zij	{3j	=	z	f	{3	for	known	constants	{	Zij	}	and	unknown	parameters	f3I	,	.	Suppose	that	we	can	write	fiT	=	(nf,	.	(Use	the	central	limit	theorem.)	4.	is	that	of	a	parameter,
formally	a	map,	v,	from	P	to	another	space	N.	This	would	lead	to	the	prior	distribution	B,	x,	"'	=	(	1�0	)	(0.1)'{0.9)100-i,	(1	.2.4)	for	i	=	0,	1,	.	Chapter	1	In	this	section	we	introduced	the	first	basic	notions	and	formalism	of	mathe	matical	statistics,	vector	observations	X	with	unknown	probability	distributions	P	ranging	over	models	P.	tp1	'	(8.2.9)	b,	,,(x)
=	B(r,	s)	'	'	1	'	•	(8.2.	10)	The	family	of	distributions	with	densities	given	by	(B.2.8)	is	referred	to	as	the	gamma	family	of	distributions	and	we	shall	write	f(p,	..\)	for	the	distribution	corresponding	to	9p,>..	,	Xn	are	independently	and	identically	distributed	as	X.	the	upper	quartile	X.1s.	SHIBATA,	R.,	"Boostrap	Estimate	of	Kullback-Leibler	Information
for	Model	Selection,"	Statistica	Sinica,	7,	375-394	(1997).	Example	B.l.3	Suppose	Y	and	Z	have	the	joint	frequency	function	of	Table	B.l.	We	find	5	11	1	.	V.,	Introduction	to	Probability	and	Statistics	from	a	Bayesian	Point	of	View,	Part	I:	Probability;	Part	II:	Inference	London:	Cambridge	University	Press,	1965.	Wiley	&	Sons,	1968.	Hint:	�	(i)	Show	that
!(On)	cau	be	replaced	by	1(0).	is	large,	a	large	a2	will	force	a	large	m)	n	to	give	us	a	good	chance	of	correctly	deciding	that	the	treatment	effect	is	there.	As	Rd	as	well	as	an	in	the	first	edition,	we	do	not	require	measure	theory	but	assume	from	the	start	that	our	models	are	what	we	call	"regular."	That	is,	we	assume	either	a	discrete	probability	whose
support	does	not	depend	on	the	parameter	set,	or	the	absolutely	continuous	case	with	a	density.	Wiley	&	Sons,	1	954.	,	Xn	are	indicators	of	n	Bernoulli	trials	with	probability	of	success	()	where	0	<	8	<	1	.	The	random	variable	g(Z)	is	written	E(Y	I	Z)	and	is	called	the	conditional	expectation	ofY	given	Z.	It	turns	out	that,	{	N(t)}	is	a	Poisson	process
with	parameter	A	if	and	only	if	the	following	conditions	hold:	(a)	N(t	+	h)	-	N(t)	is	independent	of	N(s),	s	<	t,	for	h	>	0,	(b)	N(t	+	h)	-	N(t)	has	the	same	distribution	as	N(h)	for	h	>	0,	(c)	P[N(h)	=	1]	(d)	P[N	(	h)	>	1	]	=	=	>.h	+	o(h),	and	o(h).	(b)	Solve	the	problem	of	part	(a)	for	n	=	2	when	it	is	known	that	B1	<	B,.	Define	(a)	For	each	of	these	statistics
show	that	the	distribution	under	H	does	not	depend	on	(b)	When	'1/J(u)	=	1	and	a:	=	2.	To	have	Var	h(X)	approximately	constant	in	A,	h	must	satisfy	the	differential	equation	[h<	1	l	(A)j	2	A	=	c	>	0	for	some	arbitrary	c	>	0.	0.12,-	..	Hint:	Show	that	the	joint	distribution	of	(X.,	.	l	l	)	for	all	a	where	b	is	E(U	-E	12E22	V).	Let	e	=	{(81	,	82)	:	91	>	0,92	>
0,9,	+	92	<	1}	and	let	93	=	1	-	(81	+	82).	Example	2.4.4.	Lumped	Hardy-Weinberg	Data.	B.l0.2.3	We	note	also,	although	this	is	not	strictly	part	of	this	section,	that	if	U,	V	are	random	vectors	as	previously	(not	necessarily	Gaussian),	then	equality	holds	in	(B.l0.8)	iff	for	some	b	(B.JO.IO)	with	probability	I.	j_	j_oo	T(x)	{)	p(x,	>.)dxd>.	This	statistic	has
the	following	distribution	free	property:	Proposition	4.1.1.	The	distribution	of	Dn	under	H	is	the	same	for	all	continuous	Fo.	In	particular,	PF,	(Dn	<	d)	=	Pu	(Dn	<	d),	where	U	denotes	the	U(O,	1)	distribution.	At	each	stage	with	one	that	is,	values	of	coordinate	fixed,	find	that	member	of	the	family	of	contours	to	which	the	vertical	(or	hori	zontal)	line	is
tangent.	=	2	[Z	(	Y	,	77	(	Y	))	-	l	(Y	,	"'	(	IL	o	)	]	for	the	hypothesis	that	IL	=	/L	o	within	M	as	a	"measure"	of	(squared)	distance	between	Y	and	/Lo	·	This	quantity,	called	the	deviance	between	Y	and	/Lo	,	(6.5.5)	is	always	2::	0.	(b)	Express	x11	and	:rp	in	terms	of	the	critical	value	of	the	Kolmogorov	statistic	and	the	order	statistics.	Suppose	XI	'	.	�	�	.	(b)
Show	that	E(Sm	I	Sn)	=	given	Sn	I:;"	1	X;	,	k	is	multinomial	(mfn)Sn·	6.	Then	(B	.9	.4	)	s	=	2,	HOlder's	inequality	becomes	the	Cauchy-Schwartz	inequality	(A.l	]	.	Here	xl	,	.	l5.l3)	leads	us	to	assume	that	the	number	X	of	geniuses	observed	has	approximately	a	B(n,	8)	distribution.	(b)	We	want	to	study	how	a	physical	or	economic	feature,	for	example,
height	or	in	come,	is	distributed	in	a	large	population.	Example	2.1.1.	Least	Squares.	This	can	be	remedied	by	considering	�j	=	log(A;/Ak)	=	;	-	"'•·	1	s	j	s	k	-	1,	and	rewriting	k-	1	q(x,71)	=	exp{T'[._	1)	(x)'l	-	n	log(1	+	L	e"')}	j=l	where	56	Statistical	Models,	Goals,	and	Performance	Criteria	Chapter	1	Note	that	q(x,	17)	is	a	k	-	1	parameter	canonical
exponential	family	generated	by	T(	-	l)	k	and	h{x)	=	fT�	1	l	[xi	E	{	1,	.	,	Yn2	be	two	independent	samples	from	N(Jli,	£Ti),	N(p.2	,	0'�).	Show	that	if	m	and	n	are	both	tending	to	oo	in	such	a	way	that	m/	(m	+	n)	--->	a,	0	<	a	<	I,	then	(Bm,n	-	mj	(m	+	n))	x	v'	<	m+n	P	y'a(l	-	a)	___,	'li	(x)	.	•	,	Section	3.4	177	Unbiased	Estimation	and	Risk	Inequalities	given
by	(see	Example	1.3.3	and	Problem	1	.3.8)	Jt	�	2�	s	�	=X	n	(3.4.	1	)	�	2	[	I.:	(X,	-	X)	.	Wiley	&	Sons,	SAVAGE,	L.	Ut0"2	=	0	and	10.	,	B�)	bisection	in	to	get	BJ	for	j	=	1,	.	•	,	Xkr�;	J	and	1	"'	L.,	7rkXk	-	K	k=l	X	is	unbiased	and	if	X	is	the	mean	of	a	simple	random	sample	without	replace-	ment	from	the	population	then	with	equality	iff	Xk-	=	-	_	-	VarX	<
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4.47	4.24	4fl7	3.95	3.85	3.72	3.52	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.85	4.56	4.75	3.89	3.49	3.26	3.	We	have	the	following.	We	call	they's	treatment	observations.	If	X1	and	X2	are	random	variables	and	i,	j	are	nat	ural	numbers,	then	the	product	moment	of	order	(i,j)	of	X1	and	X2	is,	by	definition,	E(XjX�).	Proof	We	compute	the	posterior
density	of	.,fii(O	-	8)	as	(5.5.10)	where	Cn	=	Cn(Xl	,	.	In	the	two	quarter	courses	for	graduate	students	in	mathematics,	statistics,	the	physical	sciences,	and	engineering	that	we	have	taught	we	cover	the	core	Chapters	2	to	7,	which	go	from	modeling	through	estimation	and	testing	to	linear	models.	Given	tolerance	c::	>	0	for	lx	ti	nal	-	x*l:	Find	xo	<	x	,	,
f(xo)	<	0	<	f(x	!	)	by	taking	lxol,	lxd	large	enough.	However,	even	in	:·.:.	If	X	A.ll.12	�	N(tl,a2),	then	11	=	1z	=	0.	,	Xn	=	Xn,	where	I:�	1	Xi	=	k.	Carry	out	a	Monte	Carlo	study	such	as	the	one	that	led	to	Figure	5.3.3	using	the	Welch	test	based	on	T	rather	than	the	two-sample	t	test	based	on	Sn.	Plot	your	results.	Fujimura,	and	our	families	for	support,
encouragement,	and	active	participation	in	an	enterprise	that	at	times	seemed	endless,	appeared	gratifyingly	ended	in	1976	but	has,	with	the	field,	taken	on	a	new	life.	It	is	convenient	to	distinguish	between	two	structural	possibilities	for	S0	and	S1	:	If	80	consists	of	only	one	point,	we	call	S0	and	H	simple.	Here	we	use	the	xJ	distribution	because	for
small	to	moderate	d	it	is	quite	different	from	the	normal	distribution.	we	only	observe	We	can	thus	write	1r(B	I	k)	for	1r(B	I	x,,	.	Show	that	Xk	given	by	(3.4.6)	is	(a)	unbiased	and	(b)	has	smaller	variance	than	X	if	b	<	2	Cov(U,X)/Var(U).	Example	4.8.2.	Suppose	X1	,	.	We	have	E(Y,	I	z	=	i)	=	P	lY,	=	I	I	z	=	i]	=	�	{	7	(	)	(	��n	(7)	_,__,_--"-	1	•	n	•	(B.!.9)	is
just	the	number	of	ways	i	successes	can	occur	in	n	Bernoulli	'	l	;	�	;	1	'	;	•	'	•	.	Then	the	s	if	8	<	8o	O	if8	>	8o	(	1	.3.1)	rN8.	Because	q	is	onto	!1,	for	each	w	E	!1	there	is	9	E	8	such	that	w	=	q(	9).	a0	is	assumed	known	a	unique	MLE	for	JJ	exists	and	uniquely	(a)	Show	that	if	o	solves	�	L,	P	i=t	(b)	Write	81	uniquely	solves	l	a'	e,	'	(	ao-!')	Xi	-	0.	Finally,
using	(4.2.3),	we	have	shown	that	Et[	k]	'Pk	(x)	�	P0[L(X,	Oo,	OJ)	=	k]	on	the	set	{x	:	L(x,	Oo,	O,)	=	k	)	.	Affine	transformations	IfP	is	the	canonical	family	generated	by	Tk	x	1	and	h	and	M	is	the	affine	transformation	from	Rk	to	R1	defined	by	M(T)	=	Mex	kT	+	hex	"	I"	'	it	is	easy	to	see	that	the	family	generated	by	M(T(X))	and	h	is	the	subfamily	of	P
corre	sponding	to	and	17(8)	=	MT8.	5,3	FIRST-	AND	H	IGHER-ORDER	ASYMPTOTICS:	THE	DELTA	M	ETHOD	WITH	APPLICATIONS	We	have	argued	in	Section	5.1	that	the	principal	use	of	asymptotics	is	to	provide	quantita	tively	or	qualitatively	useful	approximations	to	risk.	Moreover,	if	a1	+	a2	<	1,	then	[.Qa1	,	Ba2]	is	confidence	intervalfor	()	with
confidence	coefficient	1	-	(o	t	+	a2	).	AND	M.	The	LR	n	-	w	is	denoted	by	D(y,	ji),	where	TJ	and	(6.4.	12)	k	2	I	)xi	log(Xdfli	)	+	XI	log(	XI/	flDJ	i	=l	(6.4.	1	7)	x:	mi	Xi	and	fl�	mi	Mi	·	D	(X,	ji)	measures	the	distance	between	the	fit	ji	based	on	the	model	w	and	the	data	X.	Show	that	'	I	n	!	'	I	'	'	.	The	central	product	moment	of	order	(i,j)	of	X,	and	X2	is	again
by	defi	nition	E[(X	1	-	E(X1))'	(X2	E(Xz))i].	(1	-	a	)	lower	confidence	bounds	for	But	we	also	want	the	bounds	to	be	close	to	we	say	that	the	bound	with	the	smaller	probability	of	being	far	below	Formally,	for	(},	they	are	X	E	X	c	Rq,	the	following	is	true.	b	N1	b	R1	Na	b	cb	Ra	n	=	-	�-	.-__,.,.,.-.,----�-,_...---....---_.,.--.--	---��	408	I	nference	in	the	M	u	lti	para
meter	Case	Chapter	6	with	row	and	column	sums	as	indicated.	Moreover,	v	equals	the	Bayes	risk	of	the	Bayes	rule	J*	for	the	prior	1r*.	In	the	regular	cases	we	study	this	will	not	be	a	problem.	To	get	a	Bayesian	model	we	introduce	a	random	vector	9,	whose	range	is	contained	in	8,	with	density	or	frequency	function	1r.	Then	lf8	>	Bo.	Po[Bn	>	c,(a,Oo)]
�	1.	Whichever	system	you	buy	during	the	year,	you	intend	to	test	the	satellite	100	times.	See	Problem	4.8.5	for	a	simpler	proof	of	(	4.8.2).	Suppose	that	as	in	Theorem	B.7.6,	Fn(x)	F(x)	for	all	x,	F	is	continuous,	and	strictly	increasing	so	that	p-l	(n)	is	unique	for	all	0	<	n	<	1.	Let	X	Xrn;	Y1	,	.	1.3.2	•	•	Comparison	of	Decision	Procedures	In	this	section
we	introduce	a	variety	of	concepts	used	in	the	comparison	of	decision	proce	dures.	and	H	is	the	hypothesis	that	the	drug	has	no	effect	or	is	detrimental,	whereas	K	is	the	alternative	that	it	has	some	positive	effect.	Suppose	that	(X,	Y)	have	the	joint	density	1	1	p(x,	y)	�	2	pi	(x,	y)	+	2	pz(x,	y).	are	:S	k	<	min(n,	D).	The	expression	in	(c)	is,	for	j	<	n/2,
bounded	by	tl	...	(b)	Let	Sn	X�	·	The	following	approximation	to	the	distribution	of	Sn	(due	to	Wilson	and	Hilferty,	1931)	is	found	to	be	excellent	,......	(b)	Suppose	Sm	=	{	x	:	X;	>	0,	I	<	i	<	m	,	I:;"	1	X;	=	l},	the	simplex,	and	g(x,y)	=	E�l	1	E;=l	CijXiYJ	with	x	E	Sm.	y	E	Sp.	Show	that	the	von	Neumann	minimax	theorem	is	equivalent	to	the	existence	of	a
saddle	point	for	any	twice	differentiable	g.	be	the	time	at	which	the	"event"	first	occurs	in	a	Poisson	process	(the	first	t	N(t)	=	1),	T2	be	the	time	at	which	the	"event"	occurs	for	the	second	time,	and	Then	T1	,	T2	-	T1	,	T11	-	Tn	-	1	,	.	�	i	5	and	6	we	show	that	in	smoothly	parametrized	models,	reasonable	estimates	are	asymptotically	unbiased.	We	shall
discuss	the	Bayes	and	minimax	criteria.	Simpler	assumptions	can	be	formulated	using	Lebesgue	integration	theory.	It	is	often	convenient	to	identify	the	random	vector	X	with	its	realization,	the	data	X(w).	Then	each	step	of	the	iteration	both	within	cycles	and	from	cycle	to	cycle	is	quick.	Let	Nii	be	the	entries	of	an	a	x	b	contingency	table	with
associated	probabilities	Bij	and	let	1Ji	1	=	E�=	l	(}ij.	(1	)	=	•x	,	ij	=	(jj\1l,	-	>.<	l)	Continuing	in	this	way	we	can	get	arbitrarily	close	to	1].	Chapter	1	This	permits	consideration	of	data	such	as	images,	positions,	and	spheres	(e.g.,	the	Earth),	and	so	on.	Assoc.,	69,	383-393	(	1	974).	In	Example	1.1.2,	if	(1)-(4)	hold,	Pis	the	1	!	6	Statistical	Models,	Goals,
and	Performance	Criteria	'	Chapter	1	family	of	all	distributions	according	to	which	X1,...,	Xn	are	independent	and	identically	distributed	with	a	common	N(p,,	a-2)	distribution.	>	0,	IPI	<	1,	then	•	has	a	�	distribution.	Doksum-2nd	ed.	That	is,	the	desired	confidence	region	is	the	band	consisting	of	the	collection	of	intervals	{[;z;,,	x,]	:	o	<	p	<	1	}	.	I).	,
En	are	independent	N(O,	a2).	,	�	�	,	�	(b)	Show	that	when	F	and	.Fk,m	distribution	with	k	=	n1	G	are	nonnal	as	in	part	(a),	then	(si/af)f(s�fa�)	has	an	�	(c)	Now	suppose	that	F	and	and	that	0	Ck,m	=	1	�	1	and	rn	=	n2	-	1.	Proof	Because	r(	"•,	&')	=	r	supR(B,	&')	=	rk	+	o(l)	8	where	o(l)	�	0	as	k	�	oo.	We	also	by	example	introduce	the	notion	of	a
conjugate	family	of	distributions.	,	Xn)	x1	=	m	for	all	n.	It	follows	that	=	B	.3	.	2::	.	L	'l'(X,,	8�).	,	Xn	are	the	interarrival	times	for	n	customers,	then	the	joint	density	of	(X	1	,	.	BAXTER,	J.	,	�t(zn)	)T	which	is	just	the	prediction	vector	Testing.	Then	the	MLEof	u2	is	(]-2	=	�	E�-1	(Xi	-Xf	as	in	Example	2.2.9.	Although	H	:	u	=	uo	is	now	composite,	the
distribution	of	Tn	=	ni:T2/u5	is	x;_1,	independent	of	JJ..	It	next	presents	basic	asymptotic	approximations	with	one-dimensional	parameter	models	as	examples.	For	a	concrete	illustration,	let	us	turn	again	to	Example	1.1.1.	For	instance.	f(r	+	1	,	B)	�	1	-	Po	[X	<	r]	�	1	-	L	Bk-1	(1	-	B)	�	B'.	the	Wald	statistic	based	on	the	parametrization	8	(	17)
obtained	by	replacing	Boj	by	ej	(ij),	is,	by	the	algebra	of	Section	6.4.	1	,	also	equal	to	Pearson's	x2	•	,	Methods	for	Discrete	Data	Section	6.4	Example	6.4.4.	Hardy-Weinberg.	can	be	any	positive	number.	Similar	conclusions	=	___	l_	-�P	-	I.I	·'	1.'	416	I	nference	i	n	the	M	u	ltipara	m	eter	Case	Chapter	6	follow	for	the	Wald	and	Rao	statistics.	The	function
g	is	one-to-one	if,	and	only	if,	A	is	nonsingular	and	then	Recall	that	g-I(y	)	=	A	-	l	(y	-	c),	y	E	Rk,	where	A	-I	is	the	inverse	of	A	.	'	'	'	•	!	I	x1	In	this	case,	S	�	R2	Also	note	that	91	(x)	�	+	Xz,	9z	(x)	�	X1	�	(Y1	+	Yz)	,	9:21	(Y)	�	5	(y1	-	1J2	),	that	the	range	g(S)	is	R2	and	that	J·-·	(y)	=	1	z	1	2	1	2	1	-2	1	2	-	-	-	xz,	g!1	(y)	'	�	;	'	Section	8.2	487	Distribution
Theory	for	Transformations	of	Random	Vectors	Upon	substituting	these	quantities	in	(B.2.3),	we	obtain	�Px	G	Pv(YI,	Y2)	(Yl	+	y,	),	r	�	(Yl	-	Y2))	_I_	exp	-	�	�	(YI	+	Y2)2	+	_l_(YI	-	y,)2	8?r	2	4	16	I	I	"	2	exp	-	32	I::>y	i	+	5y2	+	6YIY2	I	.	,	xdf	and	[xl	is	Euclidean	distance,	then	there	exist	universal	constants	0	<	Cd	<	cd	<	00	Such	that	cdlx	l	l	<	l	xl	<	Cd
l	x!	J	.	,	x	N},	then	.	(3)	A	function	g	is	said	to	be	one	to	one	ifg(x)	(4)	Strictly	speaking,	(X,	Y)	and	�	g(y)	implies	x	y.	,	Xn)	8.	7.5.	P	9.	Save	for	these	changes	of	emphasis	the	other	major	new	elements	of	Chapter	1,	which	parallels	Chapter	2	of	the	first	edition,	are	an	extended	discussion	of	prediction	and	an	expanded	introduction	to	k-parameter
exponential	families.	Specifically,	instead	of	beginning	with	parametrized	models	we	include	from	the	start	non-	and	semiparametric	models,	then	go	to	parameters	and	parametric	models	stressing	the	role	of	identifiability.	We	may	ask	whether	decision	procedures	other	than	likelihood	ratio	tests	arise	if	we	consider	loss	functions	l(O,	a)	,	a	E	A	=	{	0,
I},	B	E	9,	that	are	not	0-1.	Notes	for	Section	1.6	(I)	Exponential	families	arose	much	earlier	in	the	work	of	Boltzmann	in	statistical	mechan	ics	as	laws	for	the	distribution	of	the	states	of	systems	of	particles-see	Feynman	(	1	963),	for	instance.	Zk)	where	the	marginal	distribution	of	y	equals	the	posterior	distribution	of	6	given	X1	=	X	t	,	.	This	is	an	issue
easy	to	point	to	in	practice	but	remarkably	difficult	to	formalize	ap	propriately.	•	�	rr(z"	1	,	lp	range	freely	and	•	p	.	1	1	)	states	that	if	oo,	EF]Xd'	Ej	:	0	for	all	€	>	0.	In	the	"life	testing"	problem	1.6.	16(i),	find	the	MLE	of	B.	Deciding	which	statistics	are	important	is	closely	connected	to	deciding	which	param	eters	are	important	and,	hence,	can	be
related	to	model	formulation	as	we	saw	earlier.	•	'	'	''	•	t	'	Rejecting	H	for	L	large	is	equivalent	to	rejecting	for	I	1	•	..	A	parameter	is	a	feature	v(P)	of	the	dis	tribution	of	X.	(See	Problem	4.1.10.)	!,	,	•	I	•	12.	and	the	IQR.	(5.4.46)	i	•	334	Asymptotic	Approximations	Chapter	5	l	By	(5.4.41),	.jni(8)(c.,(a,	80	)	-	8)	and	___,	oo	if	8	80	80.	We	shall	illustrate
some	of	the	relationships	between	these	ideas	using	the	following	8	has	two	members,	A	has	three	points.	For	instance,	if	Y	0	or	1	corresponds	to,	say,	"does	not	respond"	and	"responds,"	respectively,	and	z	=	(Treatment,	Sex)T,	then	a(B,	M)	would	be	our	prediction	of	response	or	no	response	for	a	male	given	treatment	B.	92,	Problems	13,	14).
Similarly,	if	the	value	of	the	distribution	function	F	is	not	specified	outside	some	set,	it	is	assumed	to	be	zero	to	the	"left"	ofthe	set	and	one	to	the	"right"	of	the	set.	064.	(3)	The	possibility	of	implementing	computations	of	a	magnitude	that	would	have	once	been	unthinkable.	Studies	in	which	subjects	serve	as	their	own	control	can	also	be	thought	of	as
matched	pair	experiments	.	=	546	Tables	Appendix	C	Pr(F	>	f)	f	Table	IV	F	distribution	critical	values	Pr(F	>	f)	0.05	,,	I	I	2	3	4	5	161	199	216	225	648	799	864	4052	4999	18.51	r,	6	7	8	10	15	230	234	237	239	242	246	922	937	948	957	969	985	5403	900	5625	5764	5859	5928	5981	6056	6157	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.40	19.43
38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.40	39.43	98.50	99.00	99.	(Define	the	>	q.)	X1,	.	,	T(X(	8	)),	has	level	a	if	Co	is	continuous	and	(B	+	1	)	(	1	-	a)	is	an	integer	(Problem	4.1.9).	It	may	be	integrated	with	the	material	of	Chapters	2-7	as	the	course	proceeds	rather	than	being	given	at	the	start;	or	it	may	be	included	at	the	end	of	an
introductory	probability	course	that	precedes	the	statistics	course.	For	a	given	bound	or	interval,	the	confidence	level	is	clearly	not	unique	because	any	number	(I	-	a'	)	<	(l	-	a)	will	be	a	confidence	level	if	(I	-	a)	is.	)	where	(il,	.	Generalize	Lemma	5.3.3	by	showing	thai	if	Y	1	,	.	One	of	the	most	important	uses	of	power	is	in	the	selection	of	sample	sizes	to
achieve	reasonable	chances	of	detecting	interesting	alternatives.	Moreover,	we	shall	parenthetically	discuss	features	of	the	sources	of	data	that	can	make	apparently	suitable	models	grossly	misleading.	We	introduce	the	decision	theoretic	foundation	of	statistics	including	the	no	'	tions	of	action	space,	decision	rule,	loss	function,	and	risk	through
various	examples	in	cluding	estimation,	testing,	confidence	bounds,	ranking,	and	prediction.	Thus,	for	any	real-valued	function	r(Y)	with	Elr(Y)	I	<	oo,	E(r(Y)	I	Z	=	z)	=	Eyr(y	)p(y	I	z)	'	'	•	xz	)	�	'	4�	exp	-	�	[xi	+	!x�J	.	In	the	ith	pair	one	patient	is	picked	at	random	(i	.	It	may	be	shown	(Problem	6.4.	3)	that	if	A	and	B	are	independent,	that	is,	P(A	I	=
P(A	I	B),	then	Z	is	approximately	distributed	as	N(O,	1	)	.	1.1.	218	Testing	and	Confidence	Regions	Chapter	4	1.0	0.8	0.6	0.4	0.2	0	�3	:.-:.:.:	-+=-�-=t-::-	�	-:.;	---+-	--+---+0	0.1	0.2	0.3	0.4	0.5	-	0.6	0.7	0.8	0.9	1.0	Figure	4.1.1.	Power	function	of	the	level	0.05	one-sided	test	c5k	of	H	:	()	=	0.3	versus	K	:	B	>	0.3	for	the	B(lO,	0)	family	of	distributions.	•	6.
Statist.	D	In	all	of	the	situations	we	have	discussed	it	is	clear	that	the	analysis	does	not	stop	by	specifying	an	estimate	or	a	test	or	a	ranking	or	a	prediction	function.	The	optimality	part	of	Theorem	5.4.3	is	not	valid	without	some	conditions	on	the	esti·	mates	being	considered.	What	is	missing	is	the	fact	that,	though	upper	bounding	is	the	primary	goal,
in	fact	it	is	important	to	get	close	to	the	truth-knowing	that	at	most	oo	dollars	are	owed	is	of	no	use.	7	I	Similarly,	E(Y	I	Z	=	10)	=	;	=	L17	and	E(Y	I	Z	=	0)	=	�	=	0.43.	That	is,	we	need	a	priori	estimates	of	how	well	even	the	best	procedure	can	do.	Show	that	if	9	is	a	MLE	of	9,	then	q(O)	is	an	MLE	of	w	=	q(O).	It	estimates	the	function	valued	parameter
F	defined	by	its	evaluation	at	x	E	R,	F(P)(x)	=	P[X1	5	x].	,	is	sufficient	for	B.	Note	that	Y	is	independent	of	Y1	,	.	Let	X1,	.	(X))	and	,its	(	1	-	a	)	th	quantile	obtained	from	the	table.	If	the	customers	have	provided	accurate	records	of	the	number	of	defective	items	that	they	have	found,	we	can	construct	a	frequency	distribution	{1ro,	.	LINDLEY,	LINDLEY,
D.V.,	"Decision	Analysis	and	Bioequivalence	Trials,"	Statistical	Science,	I3,	1	36--	1	41	(1998).	For	instance,	in	the	prediction	exam	ple	1.3.2,	11(·)	is	the	parameter	of	interest.	=	X	+	Z,	where	Z	is	(a)	What	is	the	conditional	distribution	of	Y	given	X	=	x?	From	(c)	and	(d)	and	Theorem	(A.	=	-1	t=1	n	!:.	i:	'.	l	Section	8.10	Topics	in	Matrix	Theory	and
Elementary	Hilbert	Space	(iv)	II	is	norm	reducing	523	Theory	llll(h	I	L)	ll	<	ll	h	ll·	(8.10.15)	ln	fact,	and	this	follows	from	(8.10.	1	,	independent.	·	I	'	The	correlation	of	X1	and	X2	is	the	covariance	of	the	standardized	versions	of	X1	and	X2.	We	are	interested	in	expected	differences	in	responses	due	to	the	treatment	effect.	It	follows	that	[X(]l	•	X(kJ]	with
k	=	n	+	1	-	j	is	a	level	a	=	(n	+	1	-	2j)	/	(n	+	1)	prediction	interval	for	Xn+	l	·	This	interval	is	a	distribution-free	prediction	interval.	p	Pr(�	>	x	)	where	x	is	in	the	body	of	the	table	and	p	is	in	the	top	row	(margin).	What	our	hypothesis	means	is	that	the	chance	that	an	individual	randomly	selected	from	the	ill	population	will	recover	is	the	same	with	the
new	and	old	drug.	220	Testing	and	Confidence	Regions	Chapter	4	Example	4.1.5.	Goodness	of	Fit	Tests.	We	test	the	hypothesis	H	:	8	E	80	versus	K	:	0	�	8o,	where	80	is	a	two-dimensional	subset	of	8	given	by	"'	8o	=	{	(	"7	1	'T/2	,	"1	1	(	1	-	"72	)	,	"12	(	1	-	'T/1	)	,	(	1	-	'T/1	)	(	1	-	"72	)	)	:	0	::;	"7	1	::;	1,	0	::;	'T/2	::;	1	}	.	(5)	We	can	be	guided	to	alternative
or	more	general	descriptions	that	might	tit	better.	,	Xn	be	i.i.d.	gamma,	r(.A,p).	Let	Q	:	II	E	e),	e	open	c	R=,	m	<	k	-	1,	be	a	cUIVed	exponential	family	=	{Po	p(x,ll)	=	exp{cT(II)T(x)	-	A(c(ll)))h(x).	For	instance,	we	may	be	inter	ested	in	the	center	of	a	population,	and	both	the	mean	Jl	and	median	v	qualify.	WALLACE,	Point	Estimation	Using	the
KullbackLeibler	Loss	Function	and	MML,	in	Proceedings	of	the	Second	Pacific	Asian	Conference	on	Knowledge	Discovery	and	Data	Mintng	Melbourne:	Springer-Verlag,	1998.	Let	U	(X1,	.	-	a?fo.Y.	asymptotic	Show	that	if	N(J",	cr2)	,	ep(X,	X	)	(g)	Suppose	X1	has	the	gross	error	density	j,(x	-	B)	(see	Section	3.5)	where	f,(x)	=	(	I	c))	density.	To	determine
significant	values	of	these	statistics	a	(more	complicated)	version	of	the	follow	'	I	'	•	I	'	!	l	ing	is	done.	APoSTOL,	T.	In	general	if	J.L	is	a	a	finite	measure	on	the	sample	space	X,	p(x,	(})	as	given	by	(1.6.1)	'	'	96	Statistical	Models,	Goals,	and	Performance	Criteria	can	be	taken	to	be	the	density	of	X	with	respect	to	J-L-see	Lehmann	(1997),	for	instance.
Next	this	model,	which	now	depends	on	the	data,	is	used	to	decide	what	estimate	of	the	measure	of	difference	should	be	employed	(cf.,	for	example,	Mandel,	1964).	We	study	the	important	application	of	the	unbiasedness	principle	in	survey	sampling.	and	Neider	(1983,	1989).	UI	/v'n.	Thus,	if	we	take	Zi	as	having	marginal	density	qo	,	which	we
temporarily	assume	known,	then	(Z1	,	YI	)	,	.	Consistency,	and	Asymptotic	NormalityEfficiency	in	Semiparametric	Models	Tests	and	Empirical	Process	Theory	Asymptotic	Properties	of	Likelihoods.	(c)	Use	the	central	limit	theorem	to	find	a	normal	approximation	to	the	critical	value	of	test	in	part	(b).	Let	X	=	(	(X	1	,	Y1	),	.	An	urn	contains	four	red	and
four	black	balls.	The	distribntion	corresponding	to	br,•	will	be	written	(J(r,	s)	.	The	other	family	of	distributions	we	wish	to	consider	is	the	beta	family,	which	is	in	dexed	by	the	positive	parameters	r	and	s.	In	Example	1	.	A.,	"On	the	Attainment	of	the	Cramer-Rao	Lower	Bound,"	Ann.	where	.6.	Bj	3	2	I	0	0	1	2	Figure	2.4.1.	The	coordinate	ascent
algorithm.	•	Includes	bibliographical	references	and	index.	1.2	again	in	which	we	as	sume	the	error	f	to	be	Gaussian	but	with	arbitrary	mean	�.	Show	that	{S,;	c	>	0}	is	a	family	of	ellipses	centered	at	(l't.	Note	the	similarity	to	the	interval	in	Problem	4.4.	13(g)	preceding.	Define	X(m)	=	(1/m)	L::,�	1	X;,	and	Sm	-	.	then	Ba(T)	is	a	lower	confidence
boundfor	()	with	confidence	coefficient	1	-	a.	We	can	now	state	the	following	elementary	consequence	of	Theorem	B.3.1.	'	'	I	492	Additional	Topics	in	Probability	and	Analysis	Appendix	B	0,	choose	x,	x	such	that	F(x)	:S	£,	1	-	F(x)	<	£.	From	(i),	(ii),	(iii),	and	(iv)	we	see	that,	if	we	define	0,	then	k(O(S)	,	a)	=	S	and,	therefore,	we	find	8(S)	as	the	unique
solution	of	the	equation,	When	S	=	0,	8(S)	=	0.	The	mean	of	X	is	0,	for	k	>	1,	and	Var	X	=	kf(k	-	2)	for	k	>	2.	kn(e0,	a)	�	zf_.	That	is,	if	we	generate	i.i.d.	from	then	the	test	that	rejects	iff	>	T(X(	1	)),	.	If	F(x)	,	Xn)	is	a	sample	from	a	population	with	continuous	distri	is	N(p,	u2	)	,	T(X)	=	(X,	u2	),	where	u2	=	n�	I	l.:(X,		X)2,	is	sufficient,	and	S(X)	=	(X(1	1	,
.	Let	F11	denote	the	distribution	of	Tn	=	Jn(	X	-	J-L)	fa	and	let	fin	and	)'211	denote	the	coefficient	of	skewness	and	kurtosis	of	Tn	.	Show	that	the	MLE	of	a,	fJ	exists	iff	(Y1	,	.	If	departments	..use	different	coins,"	then	the	data	are	naturally	decomposed	into	=	(Nm	1d,	Nmod,	Nfld	,	Njod	,	d	=	1,	,	D),	where	Nmld	is	the	number	of	male	admits	to
department	d,	and	so	on.	Rejecting	for	large	values	of	this	statistic	is	equivalent	to	rejecting	for	large	values	of	X.	(0,	T2(0)	[A'(O)J'	)	I	1	i	•	•	•	'	i'	'	I	I	,	I	for	every	sequence	{On}	with	On	=	0	+	t(..jii	for	t	E	R.	The	trouble	is	that	for	any	specified	degree	of	approximation,	say,	£	=	.01,	(5.1.6)	does	not	tell	us	how	large	n	has	to	be	for	the	chance	of	the
approximation	not	holding	to	this	degree	(the	!eft-hand	side	of	(5.1.6))	to	fall,	say,	below	.01.	(c)	Use	the	central	limit	theorem	to	show	that	00.	l	l	Moments	456	A.12	Moment	and	Cumulant	Generating	Functions	459	XI	•	CONTENTS	B	A.I	3	Some	Classical	Discrete	and	Continuous	Distributions	460	A.14	Modes	of	Convergence	of	Random	Variables
and	Limit	Theorems	466	A.I	5	Further	Limit	Theorems	and	Inequalities	468	A.t6	Poisson	Process	47	2	A.l	7	Notes	474	A.l	8	References	475	ADDITIONAL	TOPICS	IN	PROBABILITY	AND	ANALYSIS	477	B.l	Conditioning	by	a	Random	Variable	or	Vector	B.l.l	The	Discrete	Case	477	8.1.2	Conditional	Expectation	for	Discrete	Variables	479	B.l.3	Properties
of	Conditional	Expected	Values	480	8.1.4	Continuous	Variables	482	B.l.S	Comments	on	the	General	Case	484	B.2	Distribution	Theory	for	Transformations	of	Random	Vectors	B.3	485	8.2.1	The	Basic	Framework	485	8.2.2	The	Gamma	and	Beta	Distributions	488	Distribution	Theory	for	Samples	from	a	Normal	Population	49	1	8.3.1	The	x2,	F,	and	t
Distributions	49	1	8.3.2	Orthogonal	Transformations	494	B.4	The	Bivariate	Normal	Distribution	B.S	477	497	Moments	of	Random	Vectors	and	Matrices	502	B.S.!	Basic	Properties	of	Expectations	502	8.5.2	Properties	of	Variance	503	B.6	The	Multivariate	Normal	Distribution	506	8.6.1	Definition	and	Density	506	8.6.2	508	Basic	Properties.	·	Example
1.5.2.	Suppose	that	arrival	of	customers	at	a	service	counter	follows	a	Poisson	xl	be	the	time	of	arrival	of	the	first	customer,	process	with	arrival	rate	(parameter)	e.	We	note	the	connection	of	the	MP	test	to	the	Bayes	procedure	of	Section	3.2	for	de	ciding	between	Oo	and	81.	That	is,	(X(k)'	X(n-1))	is	a	level	(1	-	a)	confidence	interval	for	Xp	whatever	be
F	satisfying	our	conditions.	Inference	in	Semiparametric	Models.	Thresholds	(critical	values)	are	set	so	that	if	the	matches	occur	at	random	(i.e.,	matches	at	one	position	are	independent	of	matches	at	other	positions)	and	the	probability	of	a	match	is	than	a.	=	(5.4.38)	___,	where	..	This	leads	to	the	model	with	x	(	)	N	n	.	It	may	be	obtained	from	the
Cauchy-Schwartz	inequality,	2	r	(A.l	1	.	J.,	The	Foundations	ofStatistics	New	York:	J.	The	same	type	of	question	arises	in	all	examples.	,	Vn)T	812/S1	W2	u2	U2,	.	12),	ll	h	ll'	=	llll(h	I	L)f	+	llh	-	Il(h	I	L	i	ll'	(8.10.16)	Here	h	-	Il(h	I	L)	may	be	interpreted	as	a	projection	on	L�	=	{h	:	(h,	h')	=	0	for	all	h'	E	[}.	Intervals,	and	Regions	233	ix	CONTENTS	The
Duality	Between	Confidence	Regions	and	Tests	241	*4.6	Uniformly	Most	Accurate	Confidence	Bounds	248	*4.7	Frequentist	and	Bayesian	Formulations	251	4.8	Prediction	Intervals	252	4.9	Likelihood	Ratio	Procedures	255	4.9.1	lnttoduction	255	4.9.2	Tests	for	the	Mean	of	a	Normal	Distribution-Matched	Pair	Experiments	257	Tests	and	Confidence
Intervals	for	the	Difference	in	Means	of	Two	Normal	Populations	261	4.9.4	The	Two-Sample	Problem	with	Unequal	Variances	264	4.9.5	Likelihood	Ratio	Procedures	for	Bivariate	Normal	Distributions	266	4.5	4.9.3	4.10	Problems	and	Complements	269	4.11	Notes	295	4.12	References	295	5	ASYMPTOTIC	APPROXIMATIONS	297	5.1	Introduction:	The
Meaning	and	Uses	of	Asymptotics	297	5.2	Consistency	301	5.3	5.2.1	Plug-In	Estimates	and	MLEs	in	Exponential	Family	Models	301	5.2.2	Consistency	of	Minimum	Contrast	Estimates	304	First-	and	Higher-Order	Asymptotics:	The	Delta	Method	with	Applications	306	5.3.1	The	Delta	Method	for	Moments	306	5.3.2	The	Delta	Method	for	In	Law
Approximations	311	5.3.3	Asymptotic	Normality	of	the	Maximum	Likelihood	Estimate	in	Exponential	Families	322	Asymptotic	Theory	in	One	Dimension	5.4	324	5.4.1	Estimation:	The	Multinomial	Case	324	5.4.2	Asymptotic	Normality	of	Minimum	Contrast	and	M-Estimates	327	*5.4.3	Asymptotic	Normality	and	Efficiency	of	the	MLE	331	*	5.4.4	Testing
332	*5.4.5	Confidence	Bounds	336	•	5.5	Asymptotic	Behavior	and	Optimality	of	the	Posterior	Distribution	337	5.6	Problems	and	Complements	345	5.7	Notes	362	5.8	References	363	!	'	X	6	CONTENTS	INFERENCE	IN	THE	MULTIPARAMETER	CASE	6.1	*6.2	*6.3	Inference	for	Gaussian	Linear	Models	365	6.1.1	The	Classical	Gaussian	Linear	Model	366
6.1.2	Estimation	369	6.1.3	Tests	and	Confidence	Intervals	374	Asymptotic	Estimation	Theory	in	p	Dimensions	383	6.2.1	Estimating	Equations	384	6.2.2	Asymptotic	Normality	and	Efficiency	of	the	MLE	386	6.2.3	The	Posterior	Distribution	in	the	Multiparameter	Case	3	9!	Large	Sample	Tests	and	Confidence	Regions	6.3.1	6.3.2	*	6	.4	365	392
Asymptotic	Approximation	to	the	Distribution	of	the	Likelihood	Ratio	Statistic	3	92	Wald's	and	Rao's	Large	Sample	Tests	3	98	Large	Sample	Methods	for	Discrete	Data	400	6.4.1	Goodness-of-Fit	in	a	Multinomial	Model.	To	see	whether	the	new	treatment	is	beneficial,	we	test	H	Fo	has	a	density	fo(y).	Thus,	Po,[Bn	>	Bo	+	Zt-a/Vnf(Oo)]	=	Po,[Vn1(8o)(Bn
-	Bo)	>	Zt-a]	�	a.	e0	is	simple	as	in	Example	such	as	testing	J.L	=	J.Lo	versus	This	occurs	if	But	it	occurs	also	in	more	interesting	situations	J.L	=j:.	g,	(A.l5.4)	If	we	put	�	t)	�	if	t	�	cases	are	obtained	by	taking	and	=	and	0	and	0	otherwise,	we	get	(A.l5.2).	(1	-	a:	)	by	the	posterior	distribution	of	the	parameter	In	the	case	of	a	normal	prior	1r	(	B)	and
normal	model	(}	p	(	x	I	B),	the	level	(1	given	-	a:	)	credible	interval	is	similar	to	the	frequentist	interval	except	it	is	pulled	in	the	direction	p,0	of	the	prior	mean	and	it	i	s	a	little	narrower.	Thus,	1	/.>.	The	claim	(A.16.3)	now	follows	from	Slutsky's	theorem	(A.	Let	X	a	+	n	(	a:	)	denote	the	a:th	X	a	+	n	(	a:	)	I	(	t	+	b)	is	a	level	(	1	-	a:	)	lower	>	0	are	known
parameters	.	Some	classical	conditions	may	be	found	in	Apostol	(1	974),	p.	Assoc.,	(2000).	(b)	Find	E(Y	2.	(1.4.1)	follows	because	E(Y	-	p.)	=	Now	we	can	solve	the	problem	of	finding	the	best	MSPE	predictor	of	Y,	given	a	vector	Z;	that	is,	we	can	find	the	g	that	minimizes	E(Y	-	g(Z))2•	By	the	substitution	theorem	for	conditional	expectations	(B.l	.	When
S	=	n,	O(S)	=	I.	However,	the	treatment	is	abridged	with	few	proofs	and	no	examples	or	problems.	Assume	the	model	where	X	=	(X1	,	.	l	,	the	conditional	distribution	of	X	o	given	T	=	I:�	1	Xi	=	t	does	not	involve	0.	k,	When	considering	subsets	of	R	we	will	assume	automatically	that	they	are	measurable.	Suppose	/Ji	depends	on	the	value	Zi	of	a
covariate.	To	find	).	The	Heuristics	of	Test	Construction	When	hypotheses	are	expressed	in	terms	of	an	estimable	parameter	H	-	:	()	E	eo	c	RP,	and	we	have	available	a	good	estimate	()	of	(),	it	is	clear	that	a	reasonable	test	statis-	-	tic	is	d(O,	eo),	inf{d(x,y)	where	d	is	the	Euclidean	(or	some	equivalent)	distance	and	d(x,	:	y	E	8}.	We	give	the	proof	in	the
discrete	case.	Show	that	sup{/	F;;	1	(a)	-	F-	1(a)/	:	<	<	a	<	I	-	E}	�	0	for	all	'	>	0.	l5.1).	(See	Problem	3.5.6.)	�	8.	n	i=l	=	0,	Section	4	.	M.	s	Therefore,	the	likelihood	ratio	tests	rej	ect	for	large	values	of	distribution	under	H	(see	Example	4.4.	1	),	the	size	rej	ect	H	if,	and	only	if,	I	Tn	l	2':	2	.	(a)	Lehmann	Alte�arive.	Then	the	wrong	decision	"11	<	�-to"
is	made	when	T	<	-z(l	-	�	a).	X,,	)	[	=	E[Xl	[i	!t,	·	··	,ij	by	Problem	5.3.5,	so	the	number	d	of	nonzero	terms	in	(a)	is	U/	21	n	2:	(c)	r_-	1	r	.	Doksum	University	of	California	Pn_,nt	icc	Hall	PRENTICE	HALL	Upper	Saddle	River,	New	Jersey	07458	Library	of	Congress	Cataloging-in-Publication	Data	Bickel.	D.	give	and	plot	the	sensitivity	curves	of	the	lower	X.
,	k	}]	with	canonical	parameter	a	and	t:	=	Rk	.	E;1r;p(x	I	O;)	(3.2.10)	The	optimal	action	6*	(x)	has	r(J'(x)	I	x)	�	min	r(aj	I	x).	Appendix	B	is	as	self-contained	as	possible	with	proofs	of	most	statements,	problems,	and	references	to	the	literature	for	proofs	of	the	deepest	results	such	as	the	spectral	theorem.	'	'	.	Two	0.12	sample;	10000	Simulations,	Chi-
Square	DaJa;	Equal	Variances	0.'	'·"'	,df..so	--	-	�	�-.	Let	xi	be	the	difference	between	the	time	slept	after	administration	of	the	drug	and	time	slept	without	administration	of	the	drug	by	the	ith	patient.	Without	loss	of	generality,	if	Y	has	a	second	moment,	we	may	take	E(Y)	=	0,	Var	Y	=	1.	Let	(X1	.	with	1	degree	offree	(h)	Show	that	we	can	write	py	(y)
R	where	formula.	The	De	Moivre-Laplace	theorem	is	generalized	by	the	following.	Methuen	&	Co.,	1962.	)	[Y,	Y]	For	instance,	a	doctor	administering	a	treatment	with	delayed	effect	will	give	patients	a	time	interval	[1::	,	f']	in	which	the	treatment	is	likely	to	take	effect.	In	order	for	p	to	be	a	contrast	function	we	require	that	D(80	1	9)	is	uniquely
minimized	for	8	=	60•	That	is,	if	P90	were	true	and	we	knew	D(Bo,	8)	as	a	function	of	8,	we	could	obtain	80	as	the	minimizer.	In	Section	4.4	we	considered	the	level	{	1	-	a)	confidence	interval	X	±	uz{l	-	�	a)/	fo	for	f-t.	,	dg	be	the	decision	rules	of	Table	1.3.3.	Compute	and	plot	the	risk	points	(a)	p	�	q	=	.1,	(b)	p	�	1	-	q	�	.	Example	5.3.5.	Edgeworth
Approximations	to	the	x2	Distribution.	Let	mk	from	stratum	k	form	the	corresponding	sample	averages	X1,	XK.	1	.2	with	assumptions	(	1)--{4),	the	parameter	of	interest	can	be	character	1	1	ized	as	the	median	v	=	F-	(0.5)	or	mean	I'	=	f=oo	xdF(x)	=	J0	F-1	(u)du.	If	we	keep	temporarily	to	this	notion	of	event	as	a	recurrent	phenomenon	that	is	randomly
detennined	in	some	fashion	and	define	N(t)	as	the	number	of	events	occurring	between	time	0	and	time	t,	we	can	ask	under	what	circumstances	{	N	(t)}	will	form	a	Poisson	process.	(a)	Find	maximum	likelihood	estimates	of	the	fJi	under	the	assumption	that	these	quan	tities	vary	freely.	HANSEN,	M.	The	very	simple	proofs	of	these	results	may,	for
instance,	be	found	in	Gnedenko	(	1	967,	p.	Let	X	1	,	,	Xn	be	the	times	to	failure	of	n	pieces	of	equipment	where	we	assume	that	the	Xi	are	indepen	dent	£(A)	variables.	We	want	a	prediction	interval	for	Y	Xn+l	•	which	is	assumed	to	be	also	N(p,,	cr2	)	and	independent	of	X1	,	.	l0.6)	Proof.	(a)	If	A,	(i)	>	Q2	B,	C	are	three	events,	consider	the	assertions,
P(A	n	B	1	C)	=	P(A	1	C)P(B	(ii)	P(A	n	B	1	1	C)	(A,	B	INDEPENDENT	GNEN	C)	C)	=	P(A	1	C)P(B	1	C)	{A,	B	INDEPENDENT	GIVEN	C)	P(A	n	B)	=	P(A)P(B)	(A,	B	INDEPENDENT)	(iii)	(C	is	the	complement	of	C.)	Show	that	(i)	and	(ii)	imply	(iii),	if	A	and	C	are	independent	or	B	and	C	are	independent.	Set	C.	Since	it	is	only	X	that	we	observe,	we	need	only
consider	its	probability	distribution.	(a)	Show	that	then	.	Example	4.2.2.	Simple	Hypothesis	Against	Simple	Alternative	for	the	Multivariate	Nor	mal:	Fisher's	Discriminant	Flmction.	�	We	next	use	the	prediction	error	Y	-	Y	to	construct	a	pivot	that	can	be	used	to	give	a	prediction	interval.	,Xn	be	independentN(O,	1)	random	variables	and	let	V	=	(X1	+
ej2	+	L�	2	Xi2	•	Show	that	for	fixed	v	and	n,	P(V	>	v)	is	a	strictly	increasing	function	of	82.	The	great	advantage	of	our	new	approach	is	that	it	enables	us	to	compute	the	Bayes	procedure	without	undertaking	the	usually	impossible	calculation	of	the	Bayes	risks	of	all	corppeting	procedures.	X	is	distributed	accordihg	to	{Po	:	0	E	8	c	R}	and	,-	is	a	prior
distribution	2	for	(J	such	that	E(9	)	<	oo.	(b)	Show	that	if	c	>	0	and	a	E	(0,	1)	satisfy	Pe,	[2N1	+	N2	>	c]	=	a,	then	the	test	that	rejects	H	if,	and	only	if,	2N,	+	N2	>	c	is	MP	for	testing	H	:	8	=	80	versus	K	:	8	=	81.	However,	we	have	little	control	over	what	kind	of	distribution	of	errors	we	get	and	will	need	to	investigate	the	properties	of	methods	derived
from	specific	error	distribution	assumptions	when	these	assumptions	are	violated.	We	claim	that	l	1	Section	4.5	245	The	Duality	Between	Confidence	Regions	and	Tests	Figure	4.5.1.	The	shaded	region	is	the	compatibility	set	C	for	the	two-sided	test	of	Hp.0	:	J.L	=	J.to	in	the	normal	model.	,	n	.	These	solutions	are	the	maximum	likelihood	estimates.	A4:
sup1	AS:	'	•	{	�	I:;�	1	(�	(X;	,	t)	-	�	(X;	,	O(P)))	I	:	jt	-	9(P)I	<	,	Po)	>	�	a	(	0)	�	for	some	a	o1	0.	1	.2	and	4.1.3.	In	Example	4.1.2,	power	of	the	resulting	tests.	,	n,	l	=	1,	.	L.,	Testing	Statistical	Hypotheses	New	York:	Springer,	1986.	,	d}	=	supremum	distance.	(iii)	F	is	chosen	by	first	choosing	I'	=	6(F)	from	a	N(O,	k)	distribution	and	then	taking	F	=
N(6(F)	,	M	).	This	condition	ensures	that	g(X)	satisfies	For	convenience,	when	we	refer	to	functions	we	shall	assume	automatically	that	this	condition	is	satisfied.	(2.1.2)	The	equations	(2.1.2)	define	a	special	form	of	estimating	equations.	Use	(5.3	.6	)	to	explain	why.	-	-	(b)	Either	()	=	x	or()	is	not	unique.	Denote	the	probabilities	of	these	types	by	B11	,
B12	,	B21	,	B22	,	respectively.	�1	,P(X;	-	On)	<	0).	Justify	the	following	approximation	to	the	posterior	distribution	=	where	q.	(d)	Consider	the	problem	of	testing	H	:	Ji,	=	Ji,o	versus	K	:	Ji,	>	J.to	on	the	basis	of	the	N(p.,	"2	)	sample	X1,	.	That	is,	£,(-fii(Bn	-	8))	�	N(o,	r	1	(8))	(5.4.40)	where	1(8)	>	Ofor	all	8.	To	establish	this	note	that	(a)	sup	{	(0	+	fo)	-
11"(8)	11"	tent	and	1r	is	continuous.	In	the	one-way	layout,	(a)	Show	that	level	(	1	-	a)	confidence	intervals	for	linear	functions	of	the	form	{3j	-	{3;.	Such	a	v	is	called	a	(1	-	a)	upper	confidence	bound	on	v.	This	edition	gives	careful	proofs	of	major	results	and	explains	how	the	theory	sheds	light	on	the	properties	of	practical	methods.	1	These
conclusions	remain	valid	for	the	usual	situation	in	which	the	Z	i	are	not	random	but	their	proof	depends	on	asymptotic	theory	for	independent	nonidentically	distributed	variables,	which	we	postpone	to	Volume	II.	It	is	customary	to	write	the	model	as,	for	c(	7)	>	0,	p	(	y,	17	,	7)	Because	J	p	(	y	,	17	,	7)dy	=	=	exp{	c-	1	(	7	)	(	11T	y	-	A	(	17	)	)	}h(y,	7)	.
Peter	J.	J.Lo	if	we	have	N(p.,	0"2	)	observations	with	both	parameters	unknown	(the	t	tests	of	Example	4.5.1	and	Example	4	.	l.2)	because	0.	,	Yn)	.	Let	akxi	and	,	Bkxk	be	nonrandom	.	=	(a)	Show	that	if	T1	and	T2	do	not	depend	one,	and	81	respectively,	then	(T1	(X),	T2(X))	is	sufficient	for	e.	Finaiiy,	define	Fp,,a	as	the	d.f.	of	aY	+	p.	I:�	1	Fo(	l:i).	'	M.
Many	examples	and	impor	tant	issues	and	methods	are	discussed,	for	instance,	in	Chapter	6	of	Dahlquist,	BjOrk,	and	Anderson	(1974).	Therefore,	the	conditional	expectation	is	an	ordinary	expectation	with	respect	to	the	probability	measure	P�.	Y;	(iii)	Let	Yi	,	Y2	,	denote	the	time	required	until	the	first,	second,	.	In	Problem	13	preceding	we	gave	a	Xp
for	p	fixed.	1	or	the	physical	constant	J-L	in	Example	1.1.2.	These	are	estimation	problems.	,	Xn	is	rv	=	X	=	n	-	I	:L�=	I	Xi	,	and	it	is	enough	to	derive	the	marginal	distribution	of	Y	Xn+l	from	the	joint	distribution	of	X,	Xn	+I	and	9,	where	X	and	Xn+	I	are	independent.	COCHRAN,	Statistical	Methods,	8th	Ed.	Ames,	lA:	Iowa	State	University	D.	An
equivalent	sufficient	statistic	in	this	situation	that	is	frequently	used	IS	n	•	n	S(X1,	.	(b)	The	observations	are	X1	=	the	number	of	failures	before	the	first	success,	X2	=	the	number	of	failures	between	the	first	and	second	successes,	and	so	on,	in	a	sequence	of	binomial	trials	with	probability	of	success	fJ.	,	'll"N	}	for	the	proportion	(J	of	defectives	in
past	shipments.	�'	''	282	Testing	and	Confidence	Regions	Chapter	4	(c)	Modify	the	test	of	part	(a)	to	obtain	a	procedure	that	is	level	a	for	H	:	81	=	B�,	02	=	eg	and	exhibit	the	corresponding	family	of	confidence	circles	for	({)1,	82	).	g(Z)	for	some	g	(measuralle).	We	can	regard	twins	as	being	matched	pairs	.	I	3	.	It	was	noted	by	Fisher	as	reported	in
Jeffreys	(1961)	that	in	this	experiment	the	observed	fraction	';:	was	much	closer	to	j	than	might	be	expected	under	the	hypothesis	that	NAA	has	a	binomial,	B	(n,	�),	distribution,	NAA	m	1	I	<	=	7	x	10	_5	.	Section	1.7	73	Problems	and	Complements	where	m	=	max(x,,	.	!x	g(xn)	such	limits.	(a)	Show	that	Y	=	X2	has	density	py(y)	=	1	2.fii'Y	'	e-l(>+9	)
(e0v'Y	+	e-0v'Y),	y	>	0.	the	numbers	of	admitted	male	and	female	applicants,	and	the	corresponding	numbers	Nmo,	NJo	of	denied	applicants.	KRETcH	AND	R.	This	provides	another	proof	that	Z	and	L�	1	(	Zi	-	Z)	2	are	independent.	433	Problems	and	Complements	The	following	table	gives	the	number	of	applicants	to	the	graduate	program	of	a	small
department	of	the	University	of	California,	classified	by	sex	and	admission	status.	If	this	is	not	the	case,	they	are	estimated	with	their	empirical	versions	with	sample	means	estimating	population	means	and	sample	covariances	estimating	population	covanances.	(b)	Show	that	the	family	of	distributions	obtained	by	letting	Jl.,	v	vary	freely	is	an	ex‐
ponential	family	of	rank	{C	-	1)	+	C(A	+	B	-	2)	=	C(A	+	B	-	1)	-	1	generated	by	N++c,	Na+c	,	N+bc	where	Nabc	=	#{i	:	Xi	=	(a,b,c)}	and	"+"	indicates	summation	over	the	ind�x.	Unfortunately,	we	observe	S	=	S(X)	�	Q0	with	density	q(s,	8)	where	l,	,,	(8)	=	log	q(s,	B)	is	difficult	to	maximize;	the	function	is	not	concave,	difficult	to	compute,	and	so	on.
(a)	Show	that	if	J1	and	a2	are	unknown,	J1	E	R,	a2	>	0,	then	the	unique	MLEs	are	/i	=	X	and	a2	=	n-1	2.:�	1	(X,	-	X	)	2	(b)	Suppose	p	and	a	2	are	both	known	to	be	nonnegative	but	otherwise	unspecified.	Now	consider	the	indifference	region	(Oo,	Bt),	where	=	+	Dt.,	.0t.	we	have	made	the	correct	decision	and	the	loss	is	zero.	,	>-;	'	)PT	•	'	I	B.l0.1.4	If	A
is	spd,	then	max{	xT	Ax	:	xTx	<	I	}	�	•	max;	>-;	.	GRENANDER,	U.	•	Xn	)	=	X	=	!	L�	1	Xi,	a	common	Formally,	a	statistic	T	is	a	map	from	the	sample	space	estimate	of	X	and	s2	a-2	is	the	statistic	are	called	the	=	,	s2	=	n	1	"(X;	-	X)2	L	n	-	i	i=l	sample	mean	and	sample	variance.	We	conclude	by	studying	consis	tency	of	the	MLE	and	more	generally	MC
estimates	in	the	case	8	finite	and	8	Euclidean.	This	distribution	does	not	always	corresp:md	to	an	experiment	that	is	physically	realizable	but	rather	is	thought	of	as	a	measure	of	the	beliefs	of	the	experimenter	concerning	the	true	value	of	(J	before	he	or	she	takes	any	data.	Given	an	initial	value	Oo	define	iterates	-	_...._	_...._	.-.	h	that	i	s	strictly
increasing	on	the	range	of	,\	such	that	h(>.(X)	)	has	h(>.(X))	is	equivalent	to	>.(X),	we	specify	the	size	a	likelihood	ratio	test	through	the	test	statistic	h(>.	0,	:I	'I	14.	Now	consider	situation	(d).	�	Example	4.1.3.	Suppose	we	have	discovered	a	new	drug	that	we	believe	will	increase	the	rate	of	recovery	from	some	disease	over	the	recovery	rate	when	an
old	established	drug	is	applied.	(a)	The	likelihood	is	symmetric	about	x.	1	)	depend	on	an	additional	scalar	parameter	7.	From	the	beginning	we	stress	function-valued	parameters,	such	as	the	density,	and	function-valued	statistics,	such	as	the	empirical	distribution	function.	,	Yn	·	·	·	-oo.	_	for	d	=	1	,	,	D.	E	R,	and	g(t,li)	�	y	=	g(t;	8),	where	8	a	{l	+	exp[-
fJ(t	-	p)/15]}'	'	yi),	(b)	Suppose	we	have	observations	(	t	1	.	Suppose	that	IJ	=	(81,	,	Bk)	is	unknown	and	may	range	over	the	set	8	=	{	(B,	.	Instead	we	turn	to	the	logistic	transform	g(	1r)	,	usually	called	the	logit,	whicll	we	introduced	in	Example	1.6.8	as	the	canonical	parameter	=	=	=	=	'	xk	.t:"	·	·	(6.4.	10)	TJ	=	g	(	1r	)	=	log	[1rj	(	l	-	1r)]	.	This	suggests
that	x2	may	be	written	as	the	square	of	a	single	(approximately)	standard	normal	variable.	!	i	i	6.	In	each	case,	find	a	real-valued	sufficient	statistic	for	(),	a	fixed.	2	�	j	(	:e	logp(x,	B)	)	p(x,	B)dx.	:·.	Here	are	some	examples.	In	this	volume	we	assume	that	the	model	has	i	I	i	i	I	Section	1.1	Data,	Models,	Parameters,	and	9	Statistics	been	selected	prior	to
the	current	experiment.	Hint:	Apply	the	argument	of	the	proof	of	Theorem	2.4.2	noting	that	the	sequence	of	iterates	{fjmJ	is	bounded	and,	hence,	the	sequence	(11m	,	ijm+	t)	has	a	convergent	subse	quence.	The	values	a	=	0.01	and	0.05	are	commonly	used	in	practice.	Scholz.	It	is	no	restriction	in	the	0	is	Rk	or	a	subset	of	Rk	.	Show	that	IZn	-	Zl	�	0	is
equivalent	to	Zn;	�	Z;	for	I	:S	j	<	d.	Keener,	University	of	Michigan	From	the	Publisher	File	loading	please	wait...	E(Y	I	z	=	20)	=	0	.	i=l	i=l	(1.5.	1	1)	'	I	l	'	'	Section	1.5	45	Sufficiency	Evidently	p{x1	,	.	Consider	the	problem	of	testing	H	:	F	=	F0	versus	K	:	F	i-	Fa.	Let	F	denote	the	empirical	distribution	and	consider	the	sup	distance	between	the
hypothesis	F0	and	the	plug-in	estimate	of	F,	the	empirical	distribution	function	F.	(i)	If	a	strictly	convex	function	has	a	minimum,	it	is	unique.	Note	that	the	posterior	density	depends	on	the	data	only	through	the	total	number	of	successes,	L�	1	Xi·	We	also	obtain	the	same	posterior	density	if	B	has	prior	density	1r	and	1	Xi,	which	has	a	B(n,	8)
distribution	given	B	(}	(Problem	1.2.9).	A	sufficient	statistic	based	on	the	observables	X	I	,	.	·-	7.	LEHMANN,	"Unbiased	Estimation	in	Convex.	It	does	tum	out	that	_,	more	accurate	than	e2(X)	and	is,	in	fact,	uniformly	most	accurate	in	the	N(J.L,	.	1	7	99.25	99.30	99.33	99.36	99.37	99.40	99.43	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.79	8.70	17.44
16.04	15.44	34.	Consider	the	set	of	v0	for	which	H.,.0	is	accepted;	this	is	a	random	set	contained	in	N	with	probaPihty	at	least	1	-	a	of	containing	the	true	value	of	v(P)	whatever	be	P.	•	'	,	!	;i	(a)	Show	that	if	the	test	has	level	a,	the	power	is	•	•	•	(3(8)	=	P(U	<	a)	=	1	-	Fe(F0	1	(1	-	a))	1	1	where	F0-	(u)	=	inf{t	:	Fo	(t)	2:	u).	,	Yn).	Suppose	c	:	8	�	E	c	R'
has	a	differential	c(	II)	=	(2.3.6)	��''	(II)	mxk	on	e.	·�	1	''	•	'	'	'	'	348	Asymptotic	Approximations	2:	min	l	<	M;n1	E	(,;	L:iX;	-	X;!l)	l'lj.	This	can	be	viewed	as	an	extension	of	Example	3.3.3.	Let	1fk	be	a	prior	distribution	on	:F	constructed	as	follows:(l)	(i)	(ii)	1rk	{F	:	VarF	(X!)	fo	M}	=	0.	However,	when	we	put	the	multinomial	in	canonical	exponential
family	form,	our	parameter	set	is	open.	Leighton,	and	M.	Bo)	is	given	by	I	ifO"(x)	>	Oo	o"(x,	Oo)	0	otherwise	is	UMP	level	a	for	H	:	(}	level	(	I	-	a).	-	--	-----	-----	-	-	Section	1.7	Problems	and	71	Complements	Hint:	See	Problems	1.1.11	and	1	.	0	Note	that	the	model	for	X	is	unchanged.	They	are	only	used	to	show	that	with	randomization,	likelihood	ratio
tests	are	unbeatable	no	matter	what	the	size	a	is.	To	improve	on	this	approximation,	we	need	only	compute	!In	and	12n.	Show	that	under	the	assumptions	of	Theorem	complete.	l	•	Section	B.l	479	Conditioning	by	a	Random	Variable	or	Vector	Two	important	formulae	follow	from	(B.	Given	a	test	statistic	T(X)	we	need	to	determine	critical	values	and
eventually	the	Examples	4	.	The	first	family	has	densities	given	by	•	(8.2.8)	for	x	>	0,	where	the	parameters	p	and	A	are	taken	to	be	positive	and	f(p)	denotes	the	Euler	gamma	function	defined	by	r(p)	=	l	'	=	edt.	The	topic	presently	in	Chapter	8,	density	estima	tion,	will	be	studied	in	the	context	of	nonparametric	function	estimation.	A	special	case	of
this	is	the	famous	Deming-Stephan	proportional	fitting	of	contingency	tables	algorithm-see	Bishop,	Feinberg,	and	Holland	(	1	975),	for	instance,	and	Problems	2.4.9-2.4.10.	example	of	a	neural	net	model	is	Yi	=	p	L	h(zii;	..\1)	+	Ei	1	j	=I	i=	11	•	•	•	1	n	where	A	=	(a,	(3,	p),	h(z;	>.)	=	g(z;	a,	[3,	Jl.,	I);	and	E	l	,	.	Now	it	is	reasonable	to	•	•	suppose	that	the
value	of	(J	in	the	present	shipment	is	the	realization	of	a	random	variable	.	,	Xn+l	are	i.i.d.	as	X	where	X	has	the	exponential	distribution	F(x	I	0)	�	I	-	e-x/O,	..	If	the	,\i	are	unrestricted,	0	<	,\i	<	1,	1	<	i	<	n,	this,	from	Example	1	.6.2,	is	an	n-parameter	canonical	exponential	family	with	Yi	=	integers	from	0	to	ni	generated	by	T	(Y,	,	.	,	Xn)	P,	(X1,	.	Now
consider	dn	=	J:"	(e	+	Jn)	exp	��	(x,J+	Jn	)	-	l(X,,	e)	ds	r	dnqn(s)ds	Jlsi	8)dt	i=l	(5.5.15)	-	By	AS	and	A7,	n	o)	e-m(,,	<	exp	�(I(X	,	t)	l(X	B-))	·.	By	Problem	4.6.8,	the	UMP	test	accepts	H	if	•	•	n	L	Xi	<	X2n	(	1	-	a)	/2>-o	(4.6.3)	i=l	or	equivalently	if	A0	X2	n	(	1	-	a	)	n	<	2	"l	oo,	the	B	ayesian	X	±	p,0,	where	for	sources	of	such	prior	interval	tends	to	the
frequentist	interval;	however,	the	interpretations	of	the	intervals	are	D	different.	(3)	Arrays	of	scalars	and/or	characters	n	individuals-see	Example	as	in	contingency	tables-see	Chapter	6---or	more	generally	multifactor	multiresponse	data	on	a	number	of	individuals.	22)	is	a	consistent	estimate	of	�-	1	(11o)Hint:	Argue	as	in	Problem	5.3.10.	-	(a)	Show
that	testing	H	:	8	<	0	versus	K	:	()	>	0	is	equivalent	to	testing	H'	:	P[X1	>	OJ	(I	-	p).	The	correlation	of	XI	and	X2.	Let	fo	(x)	�	fo	(x	-	9)	where	:1::::	l(S(x)	�	s).	Let	X1	,	•	•	•	,	c	•	•	Xn	be	a	sample	from	a	population	with	the	Rayleigh	density	•	f(x,O)	=	(xj0	2	)	exp{-x2j202	},	x	>	0	0	>	0.	Furthennore,	(	)	·	(B.!	0.8)	Proof	From	Section	B.6	we	have	noted
that	there	exist	(Gaussian)	random	vectors	Up	xi,	Vqxi	such	that	E	=	Var(Ur,	vr)r,	En	=	Var(U),	E22	=	Var(V),	E12	=	cov(U,	V).	"	BICKEL,	P.,	AND	E.	is	the	distribution	of	Q	=	Zj.jV/k,	where	Z	and	V	are	inde	pendent	with	N(O,	1)	and	x�	distributions,	respectively.	Suppose	that	this	is	true	for	each	l.	Therefore,	Po,	[S	>	j]	�	a	and	j	=	k(B0,	).	,	r	for
specified	Boj	·"	For	instance,	to	test	the	Hardy-Weinberg	model	we	set	e�	=	B1	,	e�	=	B2	-	2VBt	(	1	-	VBt)	and	test	H	:	e�	=	0.	New	York:	Springer,	Lecture	Notes	in	Statistics,	2000.	TUKEY,	J.	(A.	The	following	result	can	be	useful.	Hint:	If	it	were,	there	would	be	a	set	A	such	that	p(x,	0)	>	0	on	A	for	all	0.	,	{3p	.	(c)	What	is	the	approximate
distribution	of	y'ii(	X	--	Jl.)	+	X2	,	where	J1.	It	may	also	happen	that	the	distribution	of	Tn	as	(}	ranges	over	81	is	detennined	by	a	one-dimensional	parameter	>.(0)	so	that	90	=	{0	:	>.(0)	=	0}	and	9	1	=	{0	:	>.(0)	>	0}	and	Co(Tn)	=	c,(6)(Tn)	for	all	0.	Z	able)	and	a	random	variable	is	the	information	that	we	have	and	Y	the	quantity	to	be	predicted.	3	,	=
�	=	p	(y	)	-	Z(Y)	IV	v�	Y-Y	=	vn-	1	+	1s	has	the	t	distribution,	Yn-1	·	By	solving	-tn-	1	(1	Y,	we	find	the	(	1	-	a)	prediction	interval	�a)	::;	Tp	(Y)	::;	tn	-	1	(1	-	�	a)	for	Y	=	X	±	Jn	-	1	+	1stn	-	1	(1	-	!	a	)	.	Upper	Saddle	River,	New	Jersey	07458	All	rights	reserved.	They	are	useful	in	understanding	how	the	outcomes	can	be	used	to	draw	inferences	that	go
beyond	the	particular	experiment.	Statistical	Models,	Goals,	and	Performance	Criteria	Let	X1	,	.	(5.4.54)	Assertion	(5.4.54)	establishes	that	the	test	O.in	yields	equality	in	(5.4.50)	and,	hence,	is	asymptotically	most	powerful	as	well.	Whenever	D	we	can	obtain	such	steps	in	algorithms,	they	result	in	substantial	savings	of	time.	D	82D	a2o	a2o	(	"'D	)	EP
(1·	1·)	If	aa2	>	0,	ab'l	>	0	and	802	ab2	>	BaOb	,	then	D	IS	stnctly	convex.	DOWE,	D.	�	�	Then	c(8)	is	closed	in	£	and	we	can	conclude	that	for	m	>	2,	an	MLE	(J	of	8	exists	and	(}	D	satisfies	(2.3.7).	Show	that	if	(X1,	.	(b)	Conversely	show	that	if	T(X)	is	sufficient,	then,	for	any	prior	distribution,	the	posterior	distribution	depends	on	x	only	through	T	(x)	.
For	instance,	in	Example	1.1.1,	the	fraction	of	defectives	()	can	be	thought	of	as	the	mean	of	Xjn.	See	Lehmann	(	1997)	and	Volume	II	for	discussions	of	this	property.	In	Example	4.3.4,	show	that	the	power	of	the	UMP	test	can	be	written	as	2	(	Gn(	n()/	0	is	the	parameter	of	mterest.	df"i	(	Yi	-	f"i	)Zij	O,	J.	AND	W.	Consider	the	general	framework	where
the	random	vector	X	takes	values	in	the	sample	space	I	I	I	I	I	r	E	P.	{	,·(X	I	s,	B)	log	I	S(X)	=	s	,·(X	I	s	,	Bo)	{	=	s.	A	special	feature	of	the	book	is	its	many	problems.	Crutchfield.	,z..	In	this	section	we	shall	define	and	discuss	the	basic	clements	of	Bayesian	models.	DAHLQUIST,	G.,	A.	But	xC'C	=	o	=>	ll	xC'	II	2	=	xC'Cx'	=	o	=>	xC'	=	o	.	(a)	Suppose	n	=
5	and	the	"ideal"	ordered	sample	of	size	n	-	1	=	4	is	-	1	.03,	-.30,	.30,	1.03	(these	are	expected	values	of	four	N(O,	!)-order	statistics).	For	each	n	suppose	we	have	a	level	a	test	for	H	versus	I<	based	on	a	suitable	test	statistic	T.	Prove	the	analogue	of	Theorem	1.6.1	for	discrete	k-parameter	exponential	families.	See	Figure	B.4.2.	(X1,	YI),	.	•	I	'	Section
4.3	UnifOfmly	Most	Powerful	Tests	and	Monotone	Likelihood	Ratio	Models	227	Summary.	FEYNMAN,	S.,	Mathematical	Statistics	New	York:	Academic	Press,	1967.	Fisher's	Exact	Test	From	the	result	of	Problem	6.2.4	deduce	that	if	j(o:)	(depending	on	r1	,	c1,	n)	can	be	chosen	so	that	then	the	test	that	rejects	(conditionally	on	Rr	=	Tf,	cl	=	Ct)	if	Nu	>
j(a)	is	exact	level	a.	All	the	severely	ill	patients	might,	for	instance,	have	been	assigned	to	B.	Soc.	Show	that	EPV(8)	=	P(To	>	T).	t	,	J..L2,	cr�,	cr�,	p)	denote	the	d.f.	of	(X,	Y).	We	shall	discuss	this	approach	somewhat,	by	example,	in	Chapters	4	and	Volume	II	but	refer	to	Lehmann	(	1986)	and	Lehmann	and	Casella	(1998)	for	further	reading.	I:	(	x	i	-	x
)	2	na	2	j	(n	-	1	)	,	a5	fa	2	=	Tn	=	y'n(x	-	fJ	o)	.	•	,	•	,	Section	4.5	243	The	Duality	Between	Conf1dence	Regions	and	Tests	H	=	Hv0	:	v	=	v0	test	J(X,	v0)	with	level	a.	then	the	test	that	accepts	H	;	v	va.	Hint:	�	Consider	the	class	of	all	4.3.2	the	class	Bayes	tests	of	H	:	()	1r{Oo}	1	-	1r{O,}	varies	between	0	and	l.	(2.4.2)	The	rationale	here	is	simple.	!	'	'	'	I	'
i	i	•	Section	L2	15	Bayesian	Models	tOr	0	<	(}	<	1,	Xi	=	0	or	1,	i	=	1,	.	Example	2.3.4.	Gaussian	with	Fixed	Signal	to	Noise.	The	generalized	linear	model	The	GLMs	considered	so	far	force	the	variance	of	the	response	to	be	a	function	of	its	mean.	These	authors	also	discuss	most	of	the	topics	we	deal	with	but	in	many	instances	do	not	include	detailed
discussion	of	topics	we	consider	essential	such	as	existence	and	computation	of	procedures	and	large	sample	behavior.	l.	London	71,	303	(1	905).	Statist.,	3,	1045-1069	(1975b).	This	result	is	extended	to	rules	that	are	limits	of	Bayes	rules	with	constant	risk	and	we	use	it	to	show	that	x	is	a	minimax	rule	for	squared	error	loss	in	theN(	0,	a5)	model.	(d)
Make	a	comparison	of	the	asymptotic	length	of	(4.9.3)	the	pivot	jD	-	t.j(so	where	D	and	so	are	as	in	Section	4.9.4.	29.	T	Rm	.	Then	if	treatment	B	had	been	administered	to	the	same	subject	instead	of	treatment	A,	responsey	x	+	6.	Closed	form	versus	iteratively	computed	estimates	At	one	level	closed	form	is	clearly	preferable.	,	{hr,)	=	(	{1	>	•	.	On	the
other	hand,	if	0	>	00,	Po	[S	2:	j]	>	a.	'	,	I	Problems	for	Section	B.5	'	I.	Section	6	.	,	U	F(X)	��	U(O,	1).	Show	that	p(y,	fi)	as	given	by	nential	family	model	with	l	=	2.	Let	(X,,	Y,	)	,	1	<	i	.(	Xt,	Yi	mixture	of	point	mass	at	0,	xi	and	x�	Hint:	By	sufficiency	reduce	to	n	=	1.	However,	we	illustrate	what	can	happen	with	a	simple	example.	Let	XJ	,	.	Definition
4.6.1.	A	level	(	1	-	a)	LCB	8*	of(}	is	said	to	be	more	accurate	than	a	competing	level	(	1	-	a)	LCB	8	if,	and	only	if,	for	any	fixed	8	and	all	8'	<	B.	(b)	Show	that	the	sample	correlation	coefficient	r	studied	in	Example	5.3.6	is	related	to	Z	of	(6.4.8)	by	Z	�	.fiir	.	)	A	=	are	the	multinomial	coefficients.	•	•	Theorem	5.4.4.	Suppose	the	model	P	=	{Po	:	8	E	8}	is
such	thot	the	conditions	of	Theorem	5.4.2	apply	to	'0	=	g�	and	Bn.	the	MLE.	Because	F	is	uniformly	continuous	on	[x,	x],	there	exists	c5	(£	)	>	0	such	that	for	all	Jl.	<	x1,	x2	<	x,	<	XK	=	x	be	such	that	lx	,	-	Xzl	<	J(c)	'*	IF(x,)	-	F(x2)1	<	f.	-1	Moreover,	s2	(n	-	1	)	l::	�	(Xi	-	X)	is	independent	of	X	by	Theorem	independent	of	Xn+1	by	assumption.	Under
general	conditions	(Bhattacharya	and	Rao,	1	976,	p.	,	ik)	with	ij	>	0.	5	.	Let	(X,	Y)	have	a	N(!'l>	p,2,	u�,	u�,	p)	distribution	in	the	problems	2--{;,	9	that	follow.	This	corresponds	to,	Xi	Xt	with	probability	1	Y;	with	probability	.).	=	0	<	.6.	I.,	The	Foundations	ofStatistics	,.	i	I\	I	NDEX	X	'"'-J	F,	X	is	distributed	according	to	F,	table,	379	463	B(n,	8),
binomial	distribution	with	param	eters	n	and	8,	461	£(,\),	exponeiltial	distribution	with	pa	rameter	A,	464	1{	(D,	N,	n),	hypergeometric	distribution	with	parameters	D,	N,	n,	461	M(n,	81,	.	-	>.)	.	Assumption	II	is	practically	useless	as	written.	Consider	the	hypothesis	H	:	Oij	=	Tfil	Tfj2	for	all	i,	j.	In	this	case,	we	settle	for	a	probability	at	least	(	1	-	a).	•
distribution	is	the	marginal	distribution	of	Xn+I·	The	posterior	predictive	distribution	is	the	conditional	distribution	of	Xn+l	given	X1	,	.	(a)	Suppose	Z	is	N(p.,	E).	,	n	=	/3ei-t	+	f.i,	i	=	1,	.	It	is	clearly	easier	to	compute	than	the	MLE.	Write	x1	,	.	Prediction	and	Machine	Learning.	Assmne	that	,\'(0)	<	0	exists	and	that	I'	1	VnT	I	!	'	•	i	-	I	'	.	B.l0.2.1	If	A	and
B	are	symmetric	and	A	:S	B,	then	for	any	C	(B.10.5)	B	-	A	sod	means	B-A	�	EET	and	thenCBcT	-CAcT	�	C(B-A)cT	�	CEETcT	(CE)(CEjT.	Other	distributions	should	also	be	tried.	This	is	called	(a)	Show	that	the	family	of	geometric	distributions	is	a	one-parameter	exponential	fam	ily	with	(b)	T(x)	�	x.	To	see	this	consider	first	the	case	8	>	00.	We	define
a	predictor	Y*	to	be	prediction	unbiased	for	Y	if	E(Y*	-	Y)	0	,	and	can	c�nclu�	e	that	in	the	class	of	prediction	unbiased	predictors,	the	optimal	MSPE	predictor	is	Y	X	.	The	Nij	can	be	arranged	in	a	a	x	b	contingency	table,	Nu	a	Na1	c1	1	2	N12	c2	...	Thus,	if	we	write	cTto	=	I;{c;t;o	:	c;	>	0}	+	I:	{c;t;o	:	c;	<	0}	we	can	increase	cTt0	by	replacing	a	t;o	by
t;o	+	1	in	the	first	sum	or	a	tjo	by	t;o	-	1	in	the	second.	Let	11	=	E(Xi)	be	the	average	time	for	an	infinite	series	of	records.	Ltd.	that	z	�	z.	'	Xn	be	a	sample	from	a	u	[8	-	i	8	+	i	I	distribution.	B.ll	,	•	•	'	P	ROBLEMS	AND	COMPLEMENTS	Problems	for	Section	B.	·	The	special	case	p	=	1	corresponds	to	the	familiar	exponential	distribution	£(..\)	of
(A.l3.24).	Just	how	widely	applicable	the	notions	of	this	section	are	will	become	apparent	in	Remark	1.4.5	and	Section	3.2	where	the	problem	of	MSPE	prediction	is	identified	with	the	optimal	decision	problem	of	Bayesian	statistics	with	squared	error	loss.	Appendix	B	11.	(See	Problem	4.	,	k	<	oo-see	Problem	6.4.	1	3.	h	:	R	�	R,	let	]]g]]oo	=	sup{	]g(t)	I
:	t	E	R}	denote	the	sup	norm,	and	assume	,	Xn	(i)	!	(b)	'	!	(a)	h	is	m	times	differentiable	on	R,	m	>	2.	There	is	a	deep	connection	between	symmetries	of	the	model	and	the	structure	of	such	procedures	developed	by	Hunt	and	Stein,	Lehmann,	and	others,	which	is	discussed	in	detail	in	Chapter	9	of	Lehmann	(	1986)	and	Chapter	of	Lehmann	and	Casella
5	(1998),	for	instance.	If,	on	the	other	hand,	we	only	wish	to	make	assumptions	(l}-(3)	with	t:.having	expectation	0,	we	can	take	e	=	{(!',G)	:	I'	E	R,	Gwith	density	gsuch	that	I	xg(x	)dx	=	0}	and	p(",G)	hasdensity	n�l	g(x;	-I')·	When	we	can	take	e	to	be	a	nice	subset	of	Euclidean	space	and	the	maps	()	-----+	Po	are	smooth,in	senses	to	be	made	precise
later,	models	Pare	called	parametric.	�	Example	3.4.2.	(Continued).	Estimation.	We	explore	the	connection	between	tests	of	statistical	hypotheses	and	confi	dence	regions.	For	example,	in	the	Z	would	be	the	College	Board	score	of	an	entering	freshman	or	her	first-year	grade	point	average.	.•	8.10.1.2	Spectral	Theorem	(a)	Avxp	is	symmetric	iff	there
exists	P	orthogonal	and	D	=	diag(	At,	.	In	the	binomial	one-way	layout	show	that	the	LR	test	is	asymptotically	equivalent	to	Pearson's	x2	test	in	the	sense	that	2	log	.\	-	x2	.£.;	0	under	H.	This	follows	from	(B.!	0.9)	since	aT	Var(U	-	E12E221	V)a	=	0	for	all	a	iff	(B.JO.	29)	for	the	noncentrality	parameter	82	in	the	one-way	layout.	X.	Volume	2	for	B2	,	these
are	both	UMVU.	(2)	The	construction	of	models	for	time	series,	temporal	spatial	series,	and	other	com	plex	data	structures	using	sophisticated	probability	modeling	but	again	relying	for	analytical	resuJts	on	asymptotic	approximation.	(exponential	density)	(b)	f(x,	8)	=	8c9x-(O+	I	),	X	>	c;	c	constant	>	0;	8	>	0.	Before	we	give	the	example,	here	is	the
general	definition	of	UMP:	Definition	4.3.1.	A	level	a	test	f3(0,	E,	we	conclude	that	the	MP	test	rejects	H,	if	and	only	if,	=	Critical	values	for	level	a	are	easily	determined	because	Nl	B(	n,	810)	under	H.	224).	X	to	some	space	of	values	T,	usually	a	Euclidean	space.	k	�	O,	J	,	.	410	6	Because	Z	has	rank	p,	it	fo1lows	(Problem	6.4.	14)	that	{30	is
consistent.	(b)	Deduce	that	Pearson's	,	R;	=	n	,	�	C;	Tfj2	=	n	x'	is	given	by	(6.4.9)	and	has	approximately	a	XZa-l	)	(b-1	)	distribution	under	H.	KARLIN,	S.,	A	First	Course	in	Stochastic	Processes	New	York:	Academic	Press,	1	969.	Find	the	UMP	test.	Let	Lx	(Bo,	81	)	=	p	(X,	81)	jp	(X,	Bo)	and	suppose	that	Lx	(	Bo	,	BI)	has	a	continuous	distri	bution	under
both	Po0	and	Pe1	•	Show	that	(a)	For	every	0	0).	We	find	for	z	�	20	0	I	2	y	P(Y	I	20)	7	7	7	•	1	'	•	l	l	l	•	-	These	figures	would	indicate	an	association	between	heavy	smoking	and	poor	health	be	0	cause	p(2	l	20)	is	almost	twice	as	large	as	py(2).	,	c,	(B))T	and	let	x	be	the	observed	data.	We	consider	three	situations	(a)	The	problem	dictates	the	parameter.
The	distribution	of	V	is	known	as	the	noncentral	x2	with	n	degrees	offreedom	and	(noncentrality)	parameter	82.	=	0	and	rt	oo").	Problems	to	Section	1.6	1.	If	0	<	Oo,	then	by	(1),	Eoo1	(X)	<	a	and	br	is	of	level	o:	for	H	:	()	:<	00.	"	:	'	'	:·.	(f)	Show	that	'	(g)	Let	F(x)	•	l	.	Multiparameter	models	are	the	rule.	However,	in	this	section,	we	will	discuss	three
algorithms	of	a	type	used	in	different	statistical	contexts	both	for	their	own	sakes	and	to	illustrate	what	kinds	of	things	can	be	established	about	the	black	boxes	to	which	we	all,	at	various	times,	entrust	ourselves.	(8	10	20)	.	l	covers	the	material	of	Chapters	1-6	and	Chapter	10	of	the	first	edition	with	pieces	of	Chapters	7-10	and	includes	Appendix	A
on	basic	probability	theory.	(Kiefer-Wolfowitz)	Suppose	(X,,	.	We	achieve	a	similar	effect,	generating	a	family	of	level	a	tests,	if	we	start	out	with	(1	-	a)	LCB	X	-	tn_	1	(1	-	o.)sj	y1i	and	define	J•(x,	Jl)	to	equal	!	if,	and	only	if,	X	-	tn_1(1	-	a)s/vn	2	Jl·	Evidently,	(say)	the	level	=	1	-	a.	,	Nk	)	�	M(n,	010,	.	Then,	d	=	2	and	zf	can	denote	the	pair	(Treatment
Label,	Treatment	Dose	Level)	for	patient	i.	�	Suppose	AO:	.p	�	Then	•	1	n	argrnin	-	_L	p(X,,	O).	f.	Each	item	produced	is	good	with	probability	()	and	defective	with	probability	fJ,	where	fJ	is	unknown.	By	(A.l	0.5)	and	(A.IO.l	l	),	Mx(s)	1:	if	X	is	discrete	i=l	(A.	15	0.05	1	0.1	o	035	I	030	I	20	0.05	0.05	0.25	0	.35	i	-	JIF	(Y)	II	0.35	0.25	0.40	'	'	I	'	;	clear	that
p(	·	I	z)	is	the	frequency	of	a	probability	distribution	because	by	{A.8.11).	Suppose	there	is	no	dependence	between	the	quality	of	the	items	produced	and	let	=	if	the	ith	item	is	the	record	of	n	Bernoulli	trials	with	is	good	and	0	otherwise.	The	F	Test	for	Equality	of	Scale.	Assume	the	model	log	}i	=	!31	+	f32	x	i	+	f33	log	xi	+	Ei	,	i	=	1,	.	Then	Y	and	Y
are	independent	and	the	mean	squared	prediction	error	(MSPE)	of	Y	is	=	=	=	Note	that	Y	can	be	regarded	as	both	a	predictor	of	Y	and	as	an	estimate	of	p,,	and	when	we	do	so,	AISP	E(Y)	MSE(Y)	+	cr	2	,	where	MSE	denotes	the	estimation	theory	mean	squared	error.	=	E(X1	)?	Let	(X1	,	X2	)	be	a	mndom	sample	from	the	distribution	with	density	f(x,	B)
=	g(x-B).	•	i	1	i	i	I	•	l	'	•	2.	However,	the	form	of	this	estimate	is	complex	and	if	the	model	is	incorrect	it	no	longer	is	an	appropriate	estimate	of	E(	X)/	[Var(	X)	1	2	.	:	=	rn	fJ2	<	{3g	and	show	that	it	agrees	with	the	test	of	(b)	Suppose	that	f3t	i	s	unknown.	Since	Y	is	not	known,	we	tum	to	the	mean	squared	prediction	error	(MSPE)	sure	of	"distance"	is
1'>	2	(Y,	g(Z))	or	its	square	root	yE(g(Z)	-	Y)2.	0.'	0.08	'..	See	also	Example	4.	,	Xn,	n	>	2,	be	independently	and	identically	distributed	with	density	f(x,	8)	=	I	-	0'	exp	{	-(x	-	Jl)	/0'},	x	2	Jl	,	where	8	=	(Jl,	0'2	),	-oo	<	J1	<	oo,	0'	2	>	0.	B.l	CONDITIONING	BY	A	RANDOM	VARIABLE	OR	VECTOR	The	concept	of	conditioning	is	important	in	studying
associations	between	random	vari	ables	or	vectors.	For	x	E	X,	S(x)	=	s	p(x,B)	=	q	(s,	B)r(x	I	s,	B)	(2.4.14)	where	r(·	I	·	,	B)	is	the	conditional	frequency	function	of	X	given	S(X)	q	(s	,	B)	J(B	I	Bo)	=	log	+	Eo,	q(s,	Bo)	If	Bo	=	Bold•	8	=	Bnew.	(b)	Find	a	one-dimensional	sufficient	statistic	for	a	when	Jl.	is	fixed.	,	Xn	be	independently	distributed	with
exponential	density	<	<	<	2	1	the	>	ordered	X's	be	denoted	by	Y1	Y	2	0	for	0,	and	let	·	·	·	e-xl	(28)x	Y	It	is	assumed	that	Y1	becomes	available	first,	then	Yz,	and	so	on,	and	that	observation	is	continued	until	Yr	has	been	observed.	I	1	.22)	and	(A.l	l.20),	we	see	that	if	X1	,	dent	with	finite	variances,	then	•	Var(X1	+	·	·	·	+	•	.	The	power	of	this	test	is,	by
(4.1	.2),	(z(a)	+	(v../ii/	(J)).	Sometimes	the	choice	of	P	starts	by	the	consideration	of	a	particular	parameter.	>	1.	(x))	=	n	L	1	[-X,	<	x	+	l:.(x)]	i=l	n	L	l	[F_x	(	-X,)	<	Fx	(x)]	i=l	=	nFr-u	(Fx(x))	.	-T	would	then	be	a	test	statistic	in	our	sense.)	We	select	a	number	>	c	and	accept	H	The	value	c	that	completes	our	specification	is	referred	to	as	the	critical	value
c	and	our	test	otherwise.	,	0	,	!3d+	I,	.	The	hypergeometric	distribution	with	parameters	D,	N,	and	n	:	p(k)	�	(A.I3.6)	for	k	a	natural	number	with	max(O,	n	-	(N	-	D))	and	n	may	be	any	natural	nwnbers	that	1t(D,	N,n).	(3.4.9)	Lemma	3.4.1.	Suppose	that	I	and	II	hold	and	that	&	E	&	logp(X,	B)	<	oo.	(5.1	.10)	1	implies	that	a2	<	1	with	a2	=	1	possible
(Problem	5.1.3),	the	right	Because	]	X	!]	hand	side	of	(5.1.9)	when	a2	is	unknown	be>omes	1jn	e2	For	'	=	.1,	400,	(5.1.9)	is	.25	whereas	(5.1.	10)	is	.14.	If	(Jij	=	P	[A	randomly	selected	individual	is	of	type	i	for	1	and	j	for	2]	,	then	=	{Nij	:	1	:::;	i	:::;	a,	1	:::;	j	:::;	b}	I".J	M	(n	,	(Jij	:	1	:::;	i	:::;	a,	1	:::;	j	:::;	b)	.	Suppose	the	following	loss	function	is	decided	on
TABLE	1.3.1.	The	loss	function	(Drill)	a,	(Oil)	(No	oil)	01	82	1(0,	a)	(Sell)	(Partial	rights)	a2	a3	0	10	12	I	5	6	'	'	i	Section	1.3	25	The	Decision	Theoretic	Framework	Thus,	if	there	is	oil	and	we	drill,	the	loss	is	zero,	whereas	if	there	is	no	oil	and	we	drill,	the	loss	is	12,	and	so	on.	•	(a)	Show	that	K:	1/>.	Show	that	the	following	families	of	distributions	are
two-parameter	exponential	families	and	identify	the	functions	1],	B,	T,	and	h.	,	Xn	)	,	where	k	2::�	1	x,.	If	we	use	a(·)	as	a	predictor	and	the	new	z	has	marginal	distribution	Q	then	it	is	natural	to	consider,	l(P,	a)	=	J(l'(z)	-	a(z))2	dQ(z),	the	expected	squared	error	if	a	is	used.	The	first	cumulant	c1	is	the	mean	J-.t	of	X,	c2	and	c3	equal	the	second	and	third
central	moments	f-£2	and	f-£3	of	X,	and	c4	=	J.L4	-	3.u�.	aJ,	the	deviance	is	=	5.	=	exp{g(j3,	z)}.	Some	further	examples	of	variance	stabilizing	transformations	are	given	in	the	problems.	(b)	Show	that	there	exists,	C	<	oo,	o	>	0	(depending	on	tj;)	such	that	if	jB	1°)	-	Bj	<	o,	then	j	il\i)	-	Bj	<	Cj	il\f	-	l	)	8j2	Hint:	(a)	Try	tj;(x)	=	A	log	x	with	A	>	l.	Show
that	the	EPV(8)	for	1{T	>	c)	is	uniformly	minimal	in	8	>	0	when	compared	to	the	EPV(8)	for	any	other	test.	(a)	Show	that	this	statement	is	equivalent	to	P(xp	<	Xp	<	Xp	for	all	p	E	(0,	1))	Section	4.10	Problems	and	Complements	285	where	x,	�	sup{.r	:	a	<	.r	<	b,	F	f	(>·)	<	p}	and	.r"	�	inf{.r	:	a	<	x	<	b,	fr	-	(x	)	>	p}.	1	.5).	then	it	converges	to	that
solution.	Show	that	for	the	estimates	(a)	Var	(	a)	;�	2.:::�	=1	nk	=	a	and	J'k	in	the	one-way	layout	Var	(	8k	)	=	(	(p�:)2	+	Lk=;fi	;k	)	.	Example	2.3.3.	Multinomial	Trials.	This	idea	has	been	developed	by	Bickel	and	Lehmann	(1975a,	1975b,	1976)	and	Doksum	(1975),	among	others.	n	+	1.	(a)	Find	E(Y	I	2.	'	,(t)	=	h'k(�k)zlCk+l)	lo	Hint:	Let	Z	and	V	be	as
in	the	preceding	hint.	7)	becomes	2	2	2	J	,	t	nJt,	+	t3)(t,	A5Jt	.),6(	Jt	,	-	n(Jt	))T	=	0,	which	with	/i2	=	n-	1	Lxl	simplifies	to	2	J-t	+	A6x11	-	A6it2	=	0	-	1	'	11-±	=	2	[	>..o	x	±	.),o	Note	that	11+11	-	=	-A6Ji:2	<	0,	which	implies	i"i+	>	0,	11-	<	0.	Construct	the	interval	using	F-1	and	Fu	1•	14.	Establish	{6.4.14).	'	z,2	,	.	(	1	.2.6)	To	calculate	the	posterior
probability	given	in	(	1.2.6)	we	argue	loosely	as	follows:	If	be	fore	the	drawing	each	item	was	defective	with	probability	.	a	B(n	DfN)	distribution.	In	all	of	these	cases,	Co,	the	common	distribution	of	T(X)	under	()	E	8o,	has	a	closed	form	and	is	tabled.	(b)	Recall	that	J..li	=	E(Yi)	=	Ai	1	.	A	self-crossing	of	maize	heterozygous	on	two	characteristics
(starchy	versus	sugary;	green	base	leaf	versus	white	base	leaf)	leads	to	four	possible	offspring	types:	(	1	)	sugary-white;	(2)	sugary-green;	(3)	starchy-white;	(4)	starchy-green.	1	1	:	•	l	'	l	Notes	for	Section	A.S	(	I	)	The	requirement	on	the	sets	x	-	1	(B)	is	purely	technical.	Let	X	take	on	the	specified	values	v1	,	vk	with	probabilities	81,	.	In	the	2	x	�	P	P(A
n	B)	-	P(A)P(B)	)P(	A)(1	-	P(A))P(B)	(1	-	P(B))	.	Let	S	=	S(	X	)	be	a	map	from	X	to	subsets	of	N,	then	S	is	a	(1	-	a)	confidence	region	for	v	if	the	probability	that	S(X)	contains	v	is	at	least	P	'	X	C	Rq	all	P	E	P.	We	think	of	J1-	as	representing	the	treatment	effect.	It	is	not	hard	to	check	(using	Laplace	transform	theory)	that	a	one-parameter	exponential	family
quite	generally	satisfies	Assumptions	I	and	II.	x2	Xtt/(X1	X2)	XI	(X,	X	Xt	+X,	t,	Section	1.5	43	Sufficiency	that	will	do	the	same	job.	4.9	4.9.1	L	I	K	E	L	I	H	O	O	D	RAT	I	O	P	R	O	C	E	D	U	RES	I	nt	rod	uction	Up	to	this	point,	the	results	and	examples	in	this	chapter	deal	mostly	with	one-parameter	problems	in	which	it	sometimes	is	possible	to	find	optimal
procedures.	Let	Ri	=	Nil	+	Ni2t	ci	=	Nli	+	N2i·	Show	that	given	Rr	=	TI,	R2	=	r2	=	n	-	Tr,	Nu	and	N21	are	independent	B(r	1	,	8u	/	(8u	+	81,)	)	,	B(r,,	8,!	/	(	821	+	8,,)	).	A	generic	source	of	trouble	often	called	grf!SS	errors	is	discussed	in	greater	detail	in	the	section	on	robustness	(Section	3.5.3).	New	York:	McGraw-Hill,	1975.	This	is	an	approximation
(for	large	k,	n)	and	simplification	of	a	model	under	which	(N1,	.	8	.	So,	although	the	sample	space	is	well	defined,	we	cannot	specify	the	probability	structure	completely	but	rather	only	give	a	family	{1t(N8,	N,	n)	}	of	probability	distributions	for	X,	any	one	of	D	which	could	have	generated	the	data	actually	observed.	Find	the	posterior	distri	bution	1r(O
I	x)	and	show	that	if	>.	The	first	and	second	components	of	this	vector	are	called	the	D	sample	mean	and	the	sample	variance,	respectively.	4.	In	some	applications	we	often	have	a	tested	theoretical	model	and	the	danger	is	small.	This	is	a	consequence	of	the	following	theorem,	which	reveals	that	(4.6.1)	is	nothing	more	than	a	comparison	of	(X)Wer
functions.	•	'	i,j	A	function	convex.	Lemma	1.4.1.	E(Y	-	c)	2	is	either	oofor	all	c	or	is	minimized	uniquely	by	c	=	p,	=	E(Y).	Suppose	the	Zi	in	Problem	6.4.11	are	obtained	as	realization	of	i.Ld.	Zi	and	m,	so	that	(Z;	,	X;)	are	i.i.d.	with	(X,	I	Z;)	�	B(m,	1r(.Li2Zi)).	:_	py(y)	"'	";'��'i':	1	V(g	(A(y)))	V(A(y))	V(A(y))	V(g-1	(A(y	)	)	)	l	(g-	(y))	.	(b)	using	Fisher's	exact
test	of	Problem	6.4.5?	ny	D	c.::,	'-;-o-,	19	12	0	5	Admit	Men	Women	Hint:	(b)	It	is	easier	to	work	with	N22.	(DN,	N,	n),	distribution	where	DN	fN	--->	p	as	N	--->	oo	and	XN	has	a	hypergeometric	11,	is	fixed.	Our	book	contains	more	material	than	can	be	covered	in	tw�	qp.arters.	Show	that	the	noncentral	t	distribution,	7k,6•	has	density	1	{=	x	U•-'I	e-H
x+C	tVxfk	-ol'ldx.	The	"only	if'	part	in	(b)	follows	because	jCxl2	>	0	unless	x	=	0	is	equivalent	to	Cx	=/:-	0	unless	x	=	0,	which	is	nonsingularity.	,	n,	are	n	independent	random	samples,	where	N(tLi	,	aJ).	As	we	shall	see,	although	loss	functions,	as	the	name	suggests,	sometimes	can	genuinely	be	quantified	in	economic	terms,	they	usually	are	chosen	to
qualitatively	reflect	what	we	are	trying	to	do	and	to	be	mathematically	convenient.	As	in	Section	6.	Let	X1	,	,	Xn	denote	the	times	in	days	to	failure	of	n	similar	pieces	of	equipment.	In	fact	by	varying	our	assumptions	this	class	of	models	includes	any	situation	in	which	we	have	independent	but	not	necessarily	identically	distributed	obser	vations.	Justify
formally	the	following	expressions	for	the	moments	of	h(X,	Y)	where	(X,	,	Yi	),	.	Substituting	in	(5.3.6)	we	find	Var(	X)	:	�	1/4n	and	vn(	(X)	l	-	(	>.)	l	)	has	approximately	a	N(o,	1/	4)	distribution.	[j/2]	+	I)	where	Cj	=	max	1	0	'	'	P[IUn	-	ul	<	li]	�	l	(d)	and,	hence,	from	(a},	for	every	£	>	0,	'	i	P	]lg(Un	)	-	g(u)	-	g	<	'l(u)(	Un	-	u)l	:0:	11-I	·	In	Example	4.9.3	we
saw	that	the	two	sample	t	statistic	Sn	=	�	n	n2	cY	�	X	)	,	n	=	nt	+	n2	has	a	'Tn-2	distribution	under	H	when	the	X's	and	Y's	are	normal	with	af	=	a�	.	Corr(X	1,	X2	)	J(Var	X1)(Var	X2	)	'I	I	'	'	'	'	•	'	'	'	'	-i	•	1	•	for	any	two	random	variables	Z"	z,	such	that	E(Zf)	<	oo,	E(Zi)	<	oo.	4	407	Large	Sam	ple	Methods	for	Discrete	Data	An	important	alternative	form
for	Z	is	given	by	(6.4	.8)	Thus,	z	=	y'n[P	(A	I	B)-	P(A	I	B	)]	[�(B)	�(�)	]	B,	B,	P(A)	P(A)	1	12	where	P	is	the	empirical	distribution	and	where	we	use	A,	A,	B	to	denote	the	event	that	a	randomly	selected	individual	has	characteristic	A,	A,	B.	AND	K.	may	be	quite	irrelevant	to	the	experiment	that	was	actually	performed.	Closely	related	to	the	latter	is	what



we	shall	call	confidence	interval	loss,	l(P,	a)	=	0,	fv(P)	-	of	<	d,	l(	P,	a)	=	1	otherwise.	Let	Z	=	Ef	1	}i,	the	total	number	of	successes.	Example	1.2.1.	Bernoulli	Trials.	X1	).	Particularly	important	is	the	case	Eo	=	Et	when	"Q	large"	is	equivalent	to	"F	=	(tt	1	-	p.0)EQ1X	large."	The	function	F	is	known	as	the	Fisher	discriminant	function.	]	7).	Contiguity
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Dimension	Reduction	Topics	Briefly	Touched	and	Current	Frontiers	APPENDIX	D:	SUPPLEMENTS	TO	TEXTAPPENDIX	E:	SOLUTIONS	REFERENCES	INDICES	Problems	and	Complements	appear	at	the	end	of	each	chapter.	For	instance,	l(P,	a)	=	l(v	<	a),	which	penalizes	only	overestimation	and	by	the	same	amount	arises	naturally	with	lower
confidence	bounds	as	discussed	in	Example	1.3.3.	If	v	=	(v,,	.	Sup-	pose	that	we	have	a	regular	parametric	model	{Pe	:	()	E	8}.	This	problem	arises	when	we	want	to	compare	two	treatments	or	a	treatment	and	control	(nothing)	and	both	treatments	are	administered	to	the	same	subject.	(a)	The	observations	are	indicators	of	Bernoulli	trials	with
probability	of	success	8.	(a)	Find	an	approximation	to	P[X	<	tJ	in	terms	of	fJ	and	t.	,	BJ	Bi,	BJ+	1	,	.	Regular	models.	Show	that	hv(t)	=	C.h,(t)	if	and	only	if	Sv(t)	=	sg.(t)	.	7.	We	have	just	shown	that	the	information	I(B)	in	a	sample	of	size	n	is	nh	(8).	A	second	example	is	consecutive	measurements	Xi	of	a	constant	11-	made	by	the	same	observer	who
seeks	to	compensate	for	apparent	errors.	,	Y	E	Rd	are	i.i.d.	vectors	and	EIYt	l	k	<	oo,	where	I	·	I	is	the	Euclidean	norm,	then	for	all	integers	k:	n	where	C	depends	on	d,	ElY	1	[	k	and	k	only.	Lemma	5.3.1.	If	EjX	1	lj	<	that	oo,	j	>	2,	then	there	are	constants	Cj	>	0	and	Dj	>	0	such	(5.3.3)	(5.3.4)	Note	that	for	j	even.	(b)	If	n	is	fixed	and	divisible	by	p,	then
Var(	a)	is	minimized	by	choosing	ni	ni	n	is	nl2,	n2	(c)	If	=	fixed	and	divisible	by	np	nl2(p	-	=	(d)	Give	the	·	·	·	=	2(p	-	1),	1)	.	Important	special	cases	are	the	N	(	J-L,	0"	2	)	and	gamma	(p	,	.A)	families.	1	+0,	.	These	comments	are	ordered	by	the	section	to	which	they	pertain.	15.	...	Among	many	others	who	helped	in	the	same	way	we	would	like	to	mention
C	.	Finally,	note	that	the	Neyman	Pearson	LR	test	for	H	:	()	=	()0	versus	K	:	Oo	+	t,	€	>	0	rejects	for	large	values	of	1	-	[log	pn(	X1	,	.	)	and	the	sum	is	over	all	1,	2,	.	We	consider	a	function	that	we	shall	call	a	contrastfunction	p	:	X	x	8	--->	R	and	define	E8,P(X,	8).	However,	there	are	easy	conditions	under	which	conditions	of	Theorems	6.2.2,	6.3.2,	and
6.3.3	hold	(Problem	6.5.3),	so	that	the	MLE	{3	is	unique,	asymptotically	exists,	is	consistent	with	probability	1,	and	(6.5	.9)	1	What	is	J-	({3)	?	''	:	i	i	•	•	Printed	in	the	United	States	of	America	10	9	8	7	ISBN:	6	5	4	3	2	I	1	D-13-850363-X	'	Prentice-Hall	International	(UK)	Limited,	Prentice-Hall	of	Australia	Pty.	Let	V	and	W	be	independent	with	W
x_2mand	V	having	a	noncentral	xi	distribution	.......,	with	noncentrality	parameter	02•	Show	that	S	=	(V/k)/(W/m)	has	density	Ps	(s)	=	00	L	P(R	=	i)fk+2i,	m(s)	i=O	where	R	"'	P	(�02)	and	/j,	m	is	the	density	of	Fi,m·	The	distribution	of	S	is	known	as	the	noncentral	Fk,m	distribution	with	(noncentrality)	parameter	02.	Equation	{1.2.2)	is	an	example	of
{1.2.3).	(c)	Suppose	that	for	each	a	E	(0,	1),	the	UMP	test	is	of	the	form	1	{T	>	c}.	Because	l(ij	1	)	=	>.	,	Xn	and	-X1	,	.	has	a	bivariate	is	said	to	have	a	Show	that	{	�	exp	if.l.	r	+	i1J.2	+	i2	I.	This	is	done	in	the	context	of	a	number	of	classical	exam	ples,	the	most	important	of	which	is	the	workhorse	of	statistics,	the	regression	model.	B	E	8,	8/iJB	log	p(
x,	B)	exists	and	is	finite.	If	TJ(O)	is	strictly	increasing	in	()	E	6,	then	this	family	is	MLR.	99	100	Chapter	2	Methods	of	Estimation	More	generally,	suppose	we	are	given	a	function	W	and	define	V(l1o,	11)	�	Suppose	V	(80,	8)	=	:	XxR	d	-	Rd,	W	-	('ljl1,	E11,	w(X,	11).	We	follow	the	notation	of	Example	1	.	Of	course,	we	don't	know	the	truth	so	this	is
inoperable,	but	in	a	very	weak	sense	(unbiasedncss),	p(X,	8)	is	an	estimate	of	D(80,	8).	DE	GROOT,	M.	How	many	days	must	you	observe	to	ensure	that	the	UMP	test	of	Problem	4.3.1	achieves	this?	One	such	function	(Lindley,	1998)	is	•	�·	i.	Major	examples	are	the	generalized	linear	models	of	Section	6.5.	The	comparative	roles	of	variance	stabilizing
and	canonical	transformations	as	link	functions	are	discussed	in	Volume	II.	P	=	L�=I	ii	>	2)	are	zero.	the	number	of	homozygous	dominants,	has	a	binomial	(n,p)	distribution.	,	Yn	in	canonical	exponential	family	form.	Then	restrict	attention	to	tests	that	in	fact	have	the	probability	of	rejection	less	than	or	equal	to	a	for	all	()	E	8o.	Thus,	we	observe	Y1	,
.	77	4.61	5.99	7.38	7.82	9.21	10.60	1	1	.98	13.82	15.20	3	4.	Here	is	the	method:	If	1j0ld	is	the	cunent	value	of	the	algorithm,	then	1	Tinew	=	fiold	-	k	Ciiold	)(A(iiold)	-	to).	(2)	Note	that	this	inequality	is	true	but	uninteresting	if	1(8)	=	oo	(and	,P'(8)	is	finite)	or	if	Vare(T(X))	=	oo.	Note	that	=	=	=	Y-Y	=	X	-	1	Xn+l	"'	N(O,	[n	-	+	1]cr	2	)	.	In	this	section	we
present	some	results	useful	for	prediction	theory,	esti	mation	theory,	and	regression.	III.	Doksum.	Mathematical	Statistics:	Basic	Ideas	and	Selected	Topics,	Volume	1.	Interpret	this	result.	Chapter	5	of	the	new	edition	is	devoted	to	asymptotic	approximations.	19.	Hint:	Let	t.(x)	=	F	�	(Fx(x))	-	x,	then	nF-x	(x	+	l:.	l	l	.22)	This	may	be	checked	directly.	,
Xn1	be	i.i.d.	F	and	Y].	Show	that	if	q(X)	is	a	level	then	[q(X),	q(X)]	is	a	level	interval	arbitrarily	if	q	Hint:	6.	BERNARDO,	J.	188	Measures	of	Performance	3o4o8o	The	Normal	Case.	(2)	The	generation	of	enormous	amounts	of	data-terrabytes	(the	equivalent	of	10	1	2	characters)	for	an	astronomical	survey	over	three	years.	Exhibit	the	two	solutions	of
(6.4.4)	explicitly	and	find	the	one	that	corresponds	to	the	maximizer	of	the	likelihood.	(6.4.	1	1)	logistic	linear	regres	sion	model	'"	409	Large	Sam	ple	Methods	for	Discrete	Data	Section	6.4	2,	(1,	zi)T	is	the	logistic	regression	model	of	Problem	2	.	p,2)	with	common	major	axis	given	by	(Y-1'2	)	=	(a)	Let	S,	=	{(x,	y)	:	P(	X,Yj(X,	y)	=	;	'	i	Section	B.ll
Problems	and	533	Complements	(x	-111)	if	p	>	0,	(y	-1'2)	�	-	(x	-	1'1	)	if	p	<	0.	�	Example	3.4.2.	Suppose	X1,	-	&	log	p	(x'	0)	�	&o	.	(a)	Using	the	relation	E(e'Y)	=	E(E(e'Y	I	X))	and	the	uniqueness	of	moment	gen	erating	functions	show	that	Y	has	a	P(.Ap)	distribution.	Measures	of	Performance.	(c)	We	have	a	qualitative	idea	of	what	the	parameter	is,
but	there	are	several	parameters	that	satisfy	this	qualitative	notion.	,	--�--	---	k?	·	4.	(a)	Show	that	if	in	testing	H	:	{}	=	{}0	versus	K	:	fJ	=	fJ1	there	exists	a	critical	value	c	such	that	P0,	[L(X,	80,	81)	>	c]	=	I	-	Po,	[L(X,	Bo,	81)	>	c]	then	the	likelihood	ratio	test	with	critical	value	c	is	best	in	this	sense.	1.0	0,	which	agrees	with	91	1	up	to	a	multiplicative
constant.	Intuitively,	in	estimation	we	care	how	far	off	we	are,	in	testing	whether	we	are	right	or	wrong,	in	ranking	what	mistakes	we've	made,	and	so	on.	Solve	(	_1,	=	0	by	the	method	of	g�:	Bt,	.	Let	T0	denote	a	random	variable	with	distribution	F0,	which	is	independent	ofT.	In	the	model	of	Proplern	B.4.7	let	R	�	812/8182	and	AX	and	V	�	AY,
where	X	�	=	=	y'(n	-	2)R	T	�	�c==�	J1	-	R2	.	(c)	If	(d)	In	any	case	the	vectors	ei	can	be	chosen	orthonormal	and	are	then	unique	up	to	label.	1,	.	,	Xn	are	i.i.d.	N	(	B	,	0"	)	.	We	can	extend	the	notion	of	accuracy	to	confidence	bounds	for	real-valued	functions	of	an	arbitrary	parameter.	We	define	a	level	(	1	-	n	)	prediction	interval	as	an	interval	[Y,	Y]
based	on	data	X	such	that	P	(	Y	::;	Y	::;	Y)	?:	1	n	.	If	the	control	and	treatment	responses	are	independent	and	nonnally	distributed	with	the	same	variance	a2,	we	arrive	at	the	one-way	layout	or	p-sample	model,	(6.1.6)	where	Ykl	is	the	response	of	the	lth	subject	in	the	group	obtaining	the	kth	treatment,	/3k	is	the	mean	response	to	the	kth	treatment,
and	the	€kl	are	independent	N(O,	�	)	random	variables.	·	-	.	Suppose	and	0	<	I(B)	<	oo.	AND	D.	We	may	take	any	one-to-one	function	of()as	a	new	parameter.	It	includes	the	initial	theory	presented	in	the	first	edition	but	goes	much	further	with	proofs	of	consis	tency	and	asymptotic	normality	and	optimality	of	maximum	likelihood	procedures	in	infer‐
ence.	In	some	applications,	for	example,	the	bivariate	normal	case	(Problem	2.3.	13),	the	following	corollary	to	Theorem	2.3.1	is	useful.	•	is	binomial,	B(n,	8),	that	"!	is	a	Bayes	estimate	for	206	Hint:	Given	21.	(4.	,	n	corresponding	to	the	number	of	defective	items	found.	We	define	a	decision	rule	or	procedure	0	to	be	any	function	from	the	sample	space
taking	its	values	in	A.	Expression	(!	.5.10)	where	X(n)	=	max{x1	,	.	For	instance,	in	Example	1.1.3	we	could	take	z	to	be	the	treatment	label	and	write	our	observations	as	(A,	X1).	Nevertheless,	we	can	draw	guidelines	from	our	numbers	and	cautiously	proceed.	t	of	the	theory	of	games.	�	A	feature	of	Bayesian	models	exhibited	by	this	example	is	that
there	are	natural	para	metric	families	of	priors	such	that	the	posterior	distributions	also	belong	to	this	family.	This	is	the	correlation	inequality.	Consider	a	test	with	critical	region	of	the	form	{T	>	c}	for	testing	H	:	8	=	(}0	versus	I<	:	(}	>	(}0•	Without	loss	of	generality,	take	80	=	0.	We	may	apply	Theorem	1.5.1	to	conclude	that	T(XI,	·	·	·	,	Xn)	L�	I	Xi
is	sufficient.	10.16)	and	(8.10.	We	give	the	proof	of	(5.3.4)	for	all	j	and	(5.3.3)	for	j	even.	,	9.	KARLIN,	S.,	Mathematical	Methods	and	Theory	in	Games,	Programming,	and	Economics	Reading,	MA:	Addison-Wesley,	1959.	5	5	The	posterior	predictive	distribution	is	also	used	to	check	whether	the	model	and	the	prior	give	a	reasonable	description	of	the
uncertainty	in	a	study	(see	Box,	1	9	83).	y:	-	n	L...���	.	The	book	also	describes	inference	in	multivariate	(multiparameter)	models,	exploring	asymptotic	normality	and	optimality	of	MLEs,	Wald	and	Rao	statistics,	generalized	linear	models,	and	more.	Often	there	is	a	function	q(B)	<	q0	and	K	:	such	that	H	and	K	can	be	formulated	as	H	:	>	q0•	Now
let	q(O)	q(O)	232	Testing	and	Confidence	Regions	Chapter	4	q1	>	qo	be	a	value	such	that	we	want	to	have	power	fJ(O)	at	least	fJ	when	q(O)	>	q1	.	A	list	of	the	most	frequently	occurring	ones	indicating	where	they	are	introduced	is	given	at	the	end	of	the	text.	We	will	write	Fx	for	F	when	we	need	to	distinguish	it	from	the	distribution	F-x	of	-X.	,	(Xn,
Yn)	be	a	sampj�	from	a	bivariate.N"(O,	0,	0.	That	is,	.	FERGUSON,	T.	•	-	)•	]	.	524	Additional	Topics	in	Probability	and	Analysis	Appendix	8	The	identities	and	inequalities	of	Section	1	..-1	can	readily	be	seen	to	be	special	cases	of	(B.	I:I	534	Additional	Topics	in	Probability	and	Analysis	Show	that	X	and	only	if,	p	Appendix	B	and	Y	have	normal	marginal
densities,	but	that	the	joint	density	is	normal,	if	=	0.	Here	are	some	examples:	"	:	'.	:	(b)	Find	the	optimal	test	statistic	for	testing	H	J.L	=	J.Lo	versus	K	:	J.L	>	po.	as	an	approximation	to	the	LR	test	of	H	:	a1	=	(7z	versus	K	:	a1	-=1	a2.	Thus,	we	would	want	a	posteriori	estimates	of	performance.	,	xn	)	;	that	is,	Q	(·	I	x)	has	in	the	continuous	case	density	.
,	n	where	not	all	the	z's	are	equal.	)	,	and	let	p(x,	B)	=	Po	[X	=	x].	We	will	discuss	the	fundamental	issue	of	how	to	choose	T	in	Sections	4.2,	4.3,	and	later	chapters.	13)	the	rela-	+	·	·	·	+	Xn)	=	L	Var	X,	+	2	L	Cov(X,	.	A.13.5	If	X,	,	X2	,	B(n2,	0),	.	after	the	19	sample	items	have	been	drawn.	S(to)	is	a	confidence	interval	for	f.l	for	a	given	value	to	ofT,
whereas	A*	(f.lo)	is	the	acceptance	region	for	Hp.o.	(iii)	k(fJ,	a)	increases	by	exactly	(iv)	k(O,a)	�	I	and	k(	l	,	a)	�	1	at	its	points	of	discontinuity.	is	the	statistic	T(X1	)	.	In	the	discrete	case	we	will	use	both	the	terms	frequencyfunction	and	density	for	p(x,	0).	S	Suppose	S	and	T	are	subsets	of	and	g	is	twice	differentiable.	We	define	q*	to	be	a	uniformly
most	accurate	level	(1	-	a	)	LCB	for	q(0)	if,	and	only	if,	for	any	other	level	(	I	-	a)	LCB	q,	Pe[_f	<	q(O')]	<	Pe	[q	<	q(O')	]	whenever	q((}')	<	q(	8).	S.,	AND	P.	Note	that	V	has	a	noncentral	x�	distribution	with	parameter	82.	Corollary	2.3.2.	Consider	the	exponentialfamily	k	p(x,	B)	=	h(x)	exp	I;	c;	(B)T;(x)	-	B(B)	,	x	E	X,	B	E	e.	i	'	i	j	'	l	•	Poisson	processes	are
frequently	applicable	when	we	study	phenomena	involving	events	that	occur	"rarely"	in	small	time	intervals.	Then	the	set	C	=	{(t,v)	:	a(t,v)	<	a}	=	{(t,v)	:	J(t,v)	=	0}	(t,	v)	t,	v	t	where,	for	the	given	gives	the	pairs	will	be	accepted;	and	for	the	given	v,	is	plane,	in	the	acceptance	region.	Because	the	constant	is	determined	by	the	requirement21�at	PT
and	g	1	1	are	densities,	we	must	have	PT	=	g	�·�	1	1	2•2	D	and	the	result	follows.	(B1,82)r	3	The	graph	shows	log	likelihood	contours,	where	the	log	likelihood	is	constant.	Estimation,	testing,	confidence	regions,	and	more	general	procedures	will	be	discussed	in	Chapters	2-4.	I	l	.	"	'.	,	"	.J(Bnew	I	Bold	)	-	Eo	"	=	ld	o	r	(X	I	s,	uold	)	q	(s,	uold	)	(2.4.	16)
Now,	J(Bnew	I	Bold	)	>	J(Bold	I	Bold	)	=	0	by	definition	of	Bnew	.	1	Xn	be	a	sample	from	a	population	with	density	p(	x	,	8)	given	by	-	p(x,	B)	0	otherwise.	h	from	a	convex	set	S	to	R	is	said	to	be	(strictly)	concave	if	g	=	Jensen's	Inequa�ty.	(a)	Show	that	a	solution	to	this	equation	is	of	the	form	(a,f3,J1.,15),	J1.	=	0	in	the	logistic	model,	�;	=	equal,	and
that	we	wish	to	test	H	:	fh	<	{3g	versus	K	fh	>	{3g.	We	want	to	contrast	w	to	the	case	where	there	are	no	restrictions	on	11;	that	is,	we	set	n	=	R	k	and	consider	TJ	E	fl.	If	B	is	uniformly	distributed	on	(-	"/2,	1r/2)	show	that	Y	�	tan	B	has	a	Cauchy	di	stri	bution	whose	density	is	given	by	p(y)	=	l/[1r(l	+	y2	)).	(a)	Deduce	that	depending	on	where
bisection	is	started	the	sequence	of	iterates	may	converge	to	one	or	the	Other	of	the	local	maxima	(b)	Make	a	similar	study	of	the	Newton-Raphson	method	in	this	case.	Show	directly	using	the	definition	of	the	rank	of	an	ex}X)nential	family	that	the	multi	nomial	distribution,	M(n;	B,,	.	(1	.7.2)	where	ho(t)	is	called	the	baseline	hazard	function	and	g	is
known	except	for	a	vector	{3	=	({31	,	.	!	1:	'	'	I	'	I	•	Section	4.4	Confidence	Bounds,	Intervals,	and	Regions	Definition	4.4.1.	A	statistic	v(X)	is	called	a	level	(	1	for	every	P	E	P,	235	-	o)	lower	confidence	bound	for	v	if	P[v(X)	<	v]	>	I	-	o.	,	xN	)	as	parameter	1	=	n	-k	L:f_	1	Xj.	It	is	easy	to	see	that	the	natural	X	=	�	I:�	1	xi	is	unbiased	(Problem	3.4.14)	and
has	MSE(X}	�	Varx	(X)	�	where	�	(1	-	��D	N	2	I	"	�	2.	1	•	.	Furthermore,	if	A	and	B	are	spd	and	A	:S	B,	then	This	follows	from	definition	of	snd	or	the	principal	axis	theorem	because	�	(B.	The	"if'	part	in	(b)	follows	by	noting	that	C	nonsingular	iff	det(C)	ol	0	and	det(CCT)	=	det2(C).	'	'	'	'	'	Combining	Theorem	5.3.3	and	Slutsky's	theorem,	we	see
that	here,	too,	if	H	is	true	Tn	£	N(O,	1)	so	that	z1_0	is	the	asymptotic	critical	value.	RoussEUW,	AND	W.	l	5	.	Let	X1	'	.	2xTy	-	yT	Ay	>	2xTy	-	yT	By	all	x..	,	Un)/S1·	Define	(W2,	.	NoRBERG,	R..	Be	cause	the	book	is	an	introduction	to	statistics,	we	need	probability	theory	and	expect	readers	to	have	had	a	course	at	the	level	of,	for	instance,	Hoel,	Port,	and
Stone's	Introduction	to	Probability	Theory.	We	prove	that	T	=	1	+	and	are	independent	and	the	first	of	Theorem	B.2.3,	whatever	be	these	statistics	has	a	uniform	distribution	on	(0,	Therefore,	the	conditional	distribution	of	=	t	is	U(O,	1)	whatever	be	t.	TUKEY,	Robust	Estimates	of	Location:	Sun>ey	and	Advances	Prince	ton,	NJ:	Princeton	University
Press,	1972.	The	x�	distribution	is	extremely	skew,	and	in	this	case	the	tn-l	(0.95)	approximation	is	only	good	for	n	>	102·5	316.	Newton's	method	also	extends	to	the	framework	of	Proposition	2.3.1.	In	this	case,	if	l(B)	denotes	the	log	likelihood,	the	argument	that	led	to	(2.4.2)	gives	(2.4.3)	Example	2.4.3.	Let	X1	,	.	If	the	treatment	and	placebo	have
the	same	effect,	the	difference	Xi	has	a	distribution	that	is	258	Testi	n	g	a	n	d	Confidence	Regions	C	h	a	pter	4	symmetric	about	zero.	1	5).	,	Xn	=	Xn]	=	8'(1	-	8)n-t	(1.5.1)	where	Xi	is	0	or	1	and	t	=	I:�	1	Xi.	By	Example	B	.	On	the	basis	of	the	sample	outcomes	the	organiza	tion	wants	to	give	a	ranking	from	best	to	worst	of	the	brands	(ties	not
pennitted).	Chapter	3	l	I	j	X1,	.	In	our	new	formulation	it	is	the	Xt	that	obey	(3.5.1).	'	L	I!	I	a-2	)	model.	9	L	i	keli	hood	Ratio	P	rocedu	res	257	likelihood	confidence	regions,	bounds,	and	so	on.	,	Yn	are	independent.	ft	that	Notes	for	Section	1,3	�	(I)	More	natural	in	the	sense	of	measuring	the	Euclidean	distance�between	the	estimate	(}	and	the	"truth"
0.	It	is	used	in	a	classification	context	in	which	9o,	91	correspond	to	two	known	populations	and	we	desire	to	classify	a	new	observation	X	as	belonging	to	one	or	the	other.	,	Xn)	is	an	estimate	of	a	real	parameter	f	indexing	a	family	of	distributions	from	which	X	1	,	,	Xn	are	an	i.i.d.	sample.	l5.15)	we	see	that	Nn	(t)	!:.	One	reasonable	mea	(g(Z)	-	Yf,
which	is	the	squared	prediction	error	when	g(Z)	is	used	to	predict	Y.	If	we	suppose	the	new	drug	is	at	least	as	effective	as	the	old,	then	8	=	[Bo,	1],	where	Bo	is	the	probability	of	recovery	using	the	old	drug.	,	k,	then	the	convex	support	of	the	conditional	distribution	of	z:::;:	1	A1	YJ	zU	l	given	Zj	=	z	U),	j	=	1	,	.	Show	that	the	interval	in	parts	(e)	and	!	k
and	l	in	part	(e)	can	be	approximated	by	(0	can	be	derived	from	the	pivot	T(xp)	Hint:	.	Such	tests	are	said	to	be	UMP	(unifonnly	most	powerful).	,	a	-	1,	fJJ2·	j	=	7.	N(O,	1/4/'(0)).	I	(!	logp(X,B))	.	Next	consider	the	setting	of	Proposition	8	E	e	open	c	�	RP,	2.3.1	in	which	lx(O),	the	log	likelihood	for	is	strictly	concave.	i	1	'	'	'	,	.	i'	'	j	i	J	,	'	j'	.	,	Bk),	then	a,N,	+
+akNk	has	approximately	a	N(np,,	na2	)	distribution,	where	11	=	L7	1	aifJi	and	a2	=	I:	�	1	fJi(ai	11)2,	find	an	approximation	to	the	critical	value	of	the	MP	level	a:	test	for	this	problem.	As	such	it	is	certainly	a	valuable	contribution	to	our	advanced	literature	on	theoretical	statistics."~RobertW.	,	Nr	)	be	multinomial	M(n,	9),	0=	r	(B	h	.	A.12.5	If
defined,	Alx	determines	the	distribution	of	X	uniquely	and	is	itself	uniquely	determined	by	the	distribution	of	X.	,	Xn,Xn+l	are	i.i.d.	f(x	I	8),	6	""	1r,	the	predictive	14.	Give	a	distribntion-free	level	(1	-	)	simultaneous	confidence	band	for	the	curve	{vF{p)	:	0	<	p	<	1}	.	Bayes:	The	Bayesian	point	of	view	leads	to	a	natural	global	criterion.	See	Example
1.1.3.	Let	the	actions	corresponding	to	deciding	whether	a	<	0,	(}	0	or	a	>	0	be	penoted	by	-1,	0,	1,	respectively	and	suppose	the	loss	function	is	given	by	(from	Lehmann,	1957)	=	=	Statistic	0	b+c	c	0	where	b	and	c	are	positive.	We	know	that,	given	(}	=	hypergeometric	distribution	'H(i,	N,	n)	.	Show	that	Eh(X)	h(Jl.)	+	ih(21	(Jl.)	+	:	+	Rn	where	I	Rn	l
<	M31	(Jl.)IJ1.3I/6n2	+	M(J1.4	+	30'2)	/24n2	Hint:	"	Therefore,	24.	We	show	that	Bayes	rules	with	constant	risk,	or	more	generally	with	constant	risk	over	the	support	of	some	prior,	are	minimax.	Suppose	IM41(x)l	<	M	for	all	x	and	some	constant	M	and	suppose	that	114	is	finite.	Frechet,	we	shall	'	'	'	'	Section	211	3.8	References	follow	the	lead	of
Lehmann	and	call	the	inequality	after	the	Fisher	information	number	that	appears	in	the	statement.	,	Xn)	--+	x	is	not	close	to	0	or	1	and	5.	(A.l6.3)	··	-------	··---	474	A	Review	of	Basic	Probability	Theory	The	first	of	the	inequalities	in	(	A	.	(3.4.	1	1	)	j	{	[	:8p(x,	B)	/p(x,B)	p(x,	B)dx	j	:ep(x,	O)dx	:e	jp(x,	O)dx	�	o.	Statist.,	40,	1523-1535	(1969).	Prove	the
assertions	of	Table	1	.	The	method	that	we	employ	to	prove	our	elementary	theorems	does	generalize	to	other	measures	of	distance	than	6.(Y,	g(Z))	such	as	the	mean	absolute	error	E(lg(	Z)	-	Yl)	(Problems	1.4.	7-	1	).	In	others,	we	can	be	reasonably	secure	about	some	aspects,	but	not	others.	The	correlation	inequality	corresponds	to	the	special	case	Z1
=	X1	-	E(X1),	Z2	=	X2	-	E(X2	).	,	8k,	respectively.	An	estimate	J(X)	is	said	to	be	shift	or	translation	equivariant	if,	for	all	X1,	.	Two	examples	in	which	the	MP	test	does	not	depend	on	()1	are	given.	5.4.2	5.4.3	6.2	1-.	We	introduce	the	simple	likelihood	ratio	statistic	and	simple	likelihood	ratio	(SLR)	test	for	testing	the	simple	hypothesis	H	:	()	=	Bo	versus
the	simple	alternative	K	:	0	01•	The	Neyman-Pearson	lemma,	which	states	that	the	size	a	SLR	test	is	uniquely	most	powerful	(MP)	in	the	class	of	level	a	tests,	is	established.	We	define	S	as	the	"-field	generated	by	SA	,	B	�	{	F	E	:F	:	Pp(A)	E	B),	A,	B	E	B,	where	B	is	the	class	of	Borel	sets.	)	(	v	0,	then	the	coefficient	of	skewness	and	the	kurtosis	of	Y	are
the	same	as	those	of	X.	We	XV	Preface	to	the	Second	Edition:	Volume	I	also.	Such	randomized	tests	are	not	used	in	practice.	h	(�a)	and	h	(I	-	�a)	where	denote	the	empirical	distribution.	Thus,	h(t)	=	/i	is	a	variance	stabilizing	transformation	of	X	for	the	Poisson	family	of	distributions.	As	the	second	example	suggests,	there	are	many	problems	of	this
type	in	which	it's	unclear	which	of	two	disjoint	sets	of	P's;	Pg	Po	testing	problem	is	really	one	of	discriminating	between	Po	and	PO.	Suppose	we	wish	to	sample	from	a	finite	population,	for	instance,	a	census	unit,	to	determine	the	average	value	of	a	variable	(say)	monthly	family	income	during	a	time	between	two	censuses	and	suppose	that	we	have
available	a	list	of	families	in	the	unit	with	family	incomes	at	the	last	census	.	In	order	to	reduce	differences	due	to	the	extraneous	factors	,	we	consider	pairs	of	patients	matched	so	that	within	each	pair	the	patients	are	as	alike	as	pos	sible	with	respect	to	the	extraneous	factors.	Suppose	p(x	.	Compared	to	the	frequentist	bound	(	n	1)	s	2	I	Xn-	l	(	a:	)	of
Example	4.4.2,	a�	is	shifted	in	the	direction	of	the	reciprocal	bI	a	of	the	i	s	a	level	mean	of	1r(A).	(b)	Give	an	expression	of	the	power	in	terms	of	the	X�	n	distribution.	,	xn)	n	n	�	f(x,	-	JL)	IJ	f(	x;	-	/3x;	-	1	-	(	I	-	f3)JL).	lt	is	clear,	though,	1	that	this	fonnulation	is	inadequate	because	by	taking	'	oo	v	we	can	achieve	risk	=	0.	CoVER,	T.	If	H	holds,	P{X	0,
such	that	(i)	(ii)	1	!	j	1	•	•	'	N(t)	has	a	P(:lt)	distribution	for	each	t.	Show	that	if	0	is	translation	equivariant	and	antisymmetric	and	Eo(O(X))	exists	and	is	finite,	then	-	-..	Thus,	the	power	is	1	minus	the	probability	of	type	II	error.	(c)	Explain	how	it	is	possible	if	Po	P[o(X)	=	9]	=	L	9	and	the	Bayes	estimate	with	X	is	not	a	Bayes	estimate	for	any	prior	1r.
Part	(b)	is	more	difficult.	Similarly,	a	level	(	1	any	fixed	e	and	all	-·	(4.6.	1)	is	more	accurate	than	a	competitor	8	if,	and	only	if,	for	(4.6.2)	Lower	confidence	bounds	B*	satisfying	(4.6.1)	for	all	competitors	are	called	uniformly	most	accurate	as	are	upper	confidence	bounds	satisfying	(4.6.2)	for	all	competitors.	•	•	•	=	=	!	I	I	;	•	;	Section	1.1	Data,	Models,
Parameters,	and	Statistics	5	How	do	we	settle	on	a	set	of	assumptions?	pz	(z)	p(y	z)	�	EYp(y	I	z)	�	Ey	,	�I	pz	(z)	pz	(	z)	This	probability	distribution	is	called	the	conditional	distribution	ofY	given	Example	8.1.1	Let	Y	=	(Y1	,	.	Suppose	that	X	has	the	continuous	distribution	F.	Savage	(	1954),	Raiffa	and	Schlaiffer	(	1961	),	Lindley	(	1965),	De	Groot
(1969),	and	Berger	(1985).	�	'	(d)	Relate	the	result	of	(b)	to	the	result	of	Problem	4(a).	'	.,	�	'	Appendix	B	ADDITIONAL	TOPICS	IN	PROB	ABILITY	AND	ANALYSIS	In	this	appendix	we	give	some	results	in	probability	theory,	matrix	algebra,	and	analysis	that	are	essential	in	our	treatment	of	statistics	and	that	may	not	be	treated	in	enough	detail	in
more	specialized	texts.	(4.5.3)	,	Xn	are	i.i.d.	N(J-l,	a2	)	with	u2	known.	We	will	use	asymptotic	theory	to	study	the	behavior	of	this	test	when	we	observe	i.i.d.	X1	,	.	,	k,	a	E	Rk	.	-	-	=	X.	i	i.	H.,	Optimnl	Statistical	Decisions	New	York:	McGraw	Hill,	1970.	Supplements	to	Text.	•	•	j	Section	4.5	247	The	Duality	Between	Confidence	Regions	and	Tests
Applications	of	Confidence	Intervals	to	Comparisons	and	Selections	We	have	seen	that	confidence	intervals	lead	naturally	to	two-sided	tests.	The	experimenter	may,	for	example,	assign	the	drugs	a1tematively	to	every	other	patient	in	the	beginning	and	then,	after	a	while,	assign	the	drug	that	seems	to	be	working	better	to	a	higher	proportion	of
patients.	We	conclude	by	indicating	to	what	extent	the	relationships	suggested	by	this	picture	carry	over	to	the	general	decision	theoretic	model.	In	any	case,	whatever	our	choice	of	procedure	we	need	either	a	priori	(before	we	have	looked	at	the	data)	and/or	a	posteriori	estimates	of	how	well	we're	doing.	PF[Xn	<	x]	"'	il>	vn	a	(5.1.8)	n,	Again	we	are
faced	with	the	questions	of	how	good	the	approximation	is	for	given	x,	and	What	we	in	principle	prefer	are	bounds,	which	are	available	in	the	classical	situations	of	(5.1.6)	and	(5.	=	N(O,	a�).	Let	T	=	(D	-	t.)	/so	that	E(Xf)	p,1	when	T	>	tk(	l	-	a)	,	where	tk	(l	-	a)	is	the	critical	value	using	the	Welch	=	approximation,	has	asymptotic	level	a.	Suppose	that	X
=	bution	function	(X1,	•	.	,	cn-d	p(e	l	)p(e,	I	el	)p(e3	I	e,	)	.	Now	p(y,	9)	is	a	curved	exponential	family	of	the	form	(2.3.6)	with	•	.	Hint:	h(X,	Y)	-	h(Jl.t,	!'2	)	=	h,	(Jl.t,	J1.2)(X	-	Jl.t	)	+	h2	(J1.1,	J1.2)(Y	-	J1.2	)	+	0(n	-	t	)	.	Thus,	P[!OOII	>	20	I	X	=	10]	P[lOOll	-	X	>	10	I	X	!OJ	(10011	X)	-	8	1	1.9	>	P	(	1	.2.7)	J81(0.9)(0.!)	J81(0.9)(0.1)	"'	I	-	(0.52)	0.30.	LINDLEY,
MANDEL,	J.,	The	Statistical	Analysis	of	Experimental	Data	New	York:	J.	(c)	Check	the	identity	E[E(Y	I	Z)]	=	E(Y)	(i)	1	-,	z2	+	Y2	<	1	P(Z,	Y	)(z,y)	1r	0	otherwise.	Within	each	section	of	the	text	the	presence	of	comments	at	the	end	of	the	chapter	is	signaled	by	one	or	more	numbers,	1	for	the	first,	2	for	the	second,	and	so	on.	M.,	''A	Stochastic	Model	for
the	Distribution	ofHIV	Latency	Time	Based	on	T4	Counts,"	Biometika.	Before	sampling	any	items	the	chance	that	a	given	shipment	contains	Statistkal	Models,	Goals,	and	Performance	Criteria	14	20	or	more	bad	items	is	by	the	normal	approximation	with	continuity	correction,	�.	'	!I	''	"	•	Hint:	See	Problem	1.1.12.	e	.	,	Xn)	is	given	by	n	1	n	.	But
because	N;/n	is	unbiased	and	has	0	variance	>.;(1	-	>.;)/n,	then	N;/n	is	UMVU	for	>.;	.	with	p	=	�k	and	.\	=	�	is	referred	to	as	the	chi	squared	density	with	k	degrees	offreedom	and	is	denoted	by	x%.	,	'	Central	Limit	Theorem	Let	{Xi}	be	a	sequence	of	independent	identically	distributed	random	variables	with	(common)	expectation	J.t	and	variance	a2
such	that	0	0.	Let	B	=	(B"	82)	be	a	bivariate	parameter.	Mathematical	Statistics:	Basic	Ideas	and	Selected	Topics,	Volume	II	will	be	published	in	2015.	••	.'j	.j	'	1	.I'	,	'	'	'	·	I	,	•	�	11.	,x	m	),	y	=	(Yl	l	·	·	.	It	follows	that	if	--C,	then	D(Fx	.	Show	that	the	UMP	test	is	based	on	the	statistic	Xn	be	i.i.d.	with	distribution	function	F(x).	There	have,	of	course,	been
other	important	consequences	such	as	the	extensive	devel	opment	of	graphical	and	other	exploratory	methods	for	which	theoretical	development	and	connection	with	mathematics	have	been	minimal.	[2,m2	]	-	f2	exp{-	2.,.2	L	(x;	-	JL)2}	�=	I	n	n	n{l2	1	2	-	[	?r0'2t"i2	[exp{-	2.,.2	}][exp{-	2.,.2	(L	x�	-	2JL	L	x;)	}].	Assume	that	A	=	{X	:	p(X	I	8)	>	0}	does
not	involve	e.	CASELLA,	Theory	of	Point	Estimation,	2nd	ed.	Thus,	A	is	positive	definite	iff	all	its	eigenvalues	are	positive.	By	(A.S.IO),	X	is	distribnted	r(p,	.>.)	if,	and	only	if,	>.X	is	distribnted	r(p,	1).	is	to	calculate	T(x)	and	then	reject	H	if	T(x)	of	the	test.	For	instance,	suppose	I	holds.	(a)	Let	IJn	be	the	first	iterate	of	the	Newton-Raphson	algorithm	for
solving	(6.2.1)	starting	at	o;p	Show	that	n	IJ�)	Xi,	D,P(	IJn	IJ�	-	!:.n	L	.	This	event	has	probability	(	)	(	l'	-	l'o)	<	P[T	<	-z(l	-	la)J	�	-z(l	-	la)	-	.Jii	a	(	-z(l	-	la))	�	la.	2.	(b)	We	imagine	that	the	random	variable	X*	produced	by	the	random	experiment	we	are	interested	in	has	a	distribution	that	follows	a	''true"	parametric	model	with	an	inter	pretable
parameter	(},	but	we	do	not	necessarily	observe	X*.	Hint:	'	f	'	n	n	n	n	i=l	i=l	i=l	i=l	c,	L	Y•	+	c,	L	x;y;	=	I;(c,	+	c,x,)y,	<	I;(c,	+	c,x,)1(c,x,	+	c1	>	0).	As	in	Example	1.6.	9,	suppose	X1,	.	(II)	lf	T	is	any	statistic	such	that	Ee	(ITf)	<	oo	for	all	B	E	8,	then	the	operations	of	integration	and	differentiation	by	(}	can	be	interchanged	in	J	T(	x	)p(x,	B)dx.	,	Xn)	is	a
sample	of	a	N(J.L,	a-2	)	random	variables	with	a2	known.	All	actual	measurements	are	discrete	rather	than	continuous.	Is	n	>	100	enough	or	does	it	have	to	be	n	>	100,	000?	It's	important	to	note	that	even	nonparametric	models	make	substantial	assumptions-in	Example	1.1.3that	X1,	...	D	Suppose	X1,	.	(a)	For	the	following	data	(from	Hald,	1	952,	p.
In	the	medical	setting	of	Example	4.1.3	this	asymmetry	appears	reasonable.	n+l	)	T	has	a	density	given	by	n!,	ti	>	0,	1	<	i	3.	z)	for	z	>	2	is	an	integer.	For	instance,	in	Example	1.1.1	we	can	use	the	number	of	defectives	in	the	population,	NO,	asa	parameter	and	in	Example	1.1.2,	under	assumptions	(l)-(4),	we	may	parametrize	the	model	by	the	first	and
second	moments	of	the	normal	distribution	of	the	observations	(i.e.,	by	(tt,	tt2	+	a')).	(c)	Find	the	minimax	rule	among	J1	,	.	,	Xn	be	a	sample	from	the	logistic	distribution	with	d.f.	F(x,B)	=	[I	+	exp{-(x	-	8)}]	-1	•	The	density	is	We	find	I	I	exp{-(x	8)}	f(x,	B)	=	I	+	exp{-(x	-	8)}]2	·	[	n	•	l(8)	n	-	2	L:	exp{-(X;	-	B)}	F(X,,B)	i=l	n	••	-2	L	f(X;,	8)	<	0.	(c)	Exhibit	a
two-dimensional	sufficient	statistic	for	8.	Section	4-4	•	,	Xn	be	a	sample	from	a	normal	population	with	unknown	mean	J.L	and	cr2.	L�	g�	(X,,	e)	0	n	r:Pz	1	n	82	l	1	L	&B2(X;,	B'	(t))	-	n	L	&B2	(X;,	B)	:	[	t	[	<	M	�	0,	i=l	i==l	M,	P0•	5.5.3),(5.5.13),	(SLLN)	[e-	1	We	use	sup	for	all	341	here.	(c)	Find	the	posterior	distribution	of	a.	StrJ.tist.	We	see	that	D
E(Y	-	c)2	has	a	unique	minimum	at	c	=	p,	and	the	lemma	follows.	Here,	=	II(Y	I	L)	That	is	what	(1.4.4)	tells	us.	-oo	<	y	<	oo.	�	el	-	_	8new.	,	Yr	is	an	exponential	family	with	density	L::�	r	Yi	+	(n	-	r)yr	28	-	]	<	<	<	,	0Yl	-	.	Ku	converges	in	a	neighborhood	of	zero.	A	natural	are	X	=	{(zi,	Yi)	:	1	,$	(I)	i	0,	p	>	0,	>..	•	•	,	Xn	are	i.i.d.	N(J-t,	u2	)	and	O:t	+	0:2
<	a:,	then	the	shortest	level	(	1	-	a)	interval	of	the	form	is	obtained	by	taking	[x-	z(1	-	a,)	fo'	X	+	z(1	-	a,)	;,;]	a:1	=	a:2	=	aj2	(assume	a-2	known).	(The	negative	binomial	distribution	is	that	of	the	number	of	failures	before	the	nth	success	in	a	sequence	of	Bernoulli	trials	with	probability	of	success	0.)	Hint:	By	Theorem	1.6.1,	Pe	[L�	1	X,	=	k]	=	c,(l	-	9)'0",
0	<	9	<	I.	We	let	X1,	.	t(Yh	.	Given	a	closed	linear	subspace	C	of	1i	we	define	the	projection	operator	11(·	I	C)	:	1i	�	C	by:	11(h	I	C)	is	that	h'	E	C	that	achieves	mi	(	l	l	h	h'll	:	h'	E	C).	We	shall	pursue	this	approach	further	in	Chapter	3.	See	A.lO.	This	corresponds	to	an	a	priori	bound	on	the	risk	of	a	on	v(X)	viewed	as	a	decision	procedure	with	action
space	R	and	loss	function,	l(P,a)	0,	a	>	v(P)	1,	a	<	v(P)	24	Chapter	1	Statistical	Models,	Goals,	and	Perform	ance	Criteria	an	asymmetric	estimation	type	loss	function.	,	Xm	be	i.i.d.	F,	Y1	,	.	That	is,	for	integration	over	Rq,	:0	j	T(x)p(x,	B)	dx]	j	T(x)	:Op(x,	B)dx	�	(3.4.8)	whenever	the	right-hand	side	of	(3.4.8)	is	finite.	t=l	�	0.	However,	we	avoid	this
awkward	notation	when	the	meaning	is	clear.	The	distribution	of	the	response	Yi	for	the	ith	subject	or	case	in	the	study	is	postulated	to	depend	on	certain	characteristics	zi	of	the	ith	subject.	Random	variability	I	'	i	Section	Ll	Data,	Models,	3	Parameters,	and	Statistics	here	would	come	primarily	from	differing	responses	among	patients	to	the	same
drug	but	also	from	error	in	the	measurements	and	variation	in	the	purity	of	the	drugs.	Next	we	choose	a	parametric	model	for	1r	(z	)	that	will	generate	useful	procedures	for	analyzing	experiments	with	binary	responses.	are	given	by	and	that	a	level	(	1	a)	confidence	interval	for	a2	is	given	by	(n	-	p)	s2	lxn	-p	(	1	'lj;	(b)	Find	confidence	intervals	for	�	(
�	+	tJ3	)	�	a	)	::;	a2	::;	(n	-	p)	s2	lx	n-p	(�	a	)	.	,	Yn	are	independent	with	vari	ances	I	and	E(Y1	)	=	0,	E(Y;)	=	0,	i	=	2	,	.	Show	the	distribution	of	X	form	an	r-parameter	exponential	family	and	identify	fJ,	B,	T,	and	h.	Editora	Prentice-Hall	do	Brasil,	Ltda.,	Rio	de	Janeiro	!	To	Erich	L	Lehmann	,I	'	'	'	'	--	-	--	---------	-------	"-	CONTENTS	PREFACE	TO	THE
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Xn	denote	the	incomes	of	a	sample	of	replacement.	This	is	a	curved	exponential	2��2	,	.	,	z,p))	+	2:::	..0z,1	+	0,	j	=	1,	2.	Quang,	and	A	Samulon.	,	Xn	be	a	sample	from	a	population	with	density	f	(t	8)	where	()	and	f	are	unknown,	but	f	(t)	=	f(	-t)	for	all	t,	and	f	is	continuous	and	positive.	(iii)	p,	=	17.	Here	are	two	points	to	note:	(1)	A	parameter	can
have	many	representations.	l-'2	•	cr�	,	aJ,	p)	�	N(l-',	!:.)	dis2	tribution.	Next	use	Bayes	rule.	R.	The	example	illustrates	both	the	difficulty	of	speci	fying	a	stochastic	model	and	translating	the	question	one	wants	to	answer	into	a	statistical	0	hypothesis.	Of	course,	with	ever	faster	computers	a	difference	at	this	level	is	irrelevant.	AND	Z.	If	a	and	b	are
integers,	then	/3	(	a,	b)	,	W,	are	in	is	the	distribution	of	(aV	fbW)[l	+	(aVfbW)]-	1	,	where	V1	,	.	1.1	Data	and	Models	Most	studies	and	experiments,	scientific	or	industrial,	large	scale	or	small,	produce	data	whose	analysis	is	the	ultimate	object	of	the	endeavor.	There	is	more	material	on	Bayesian	models	and	analysis.	The	frame	we	shall	fit	them	into	is
the	following.	GNEDEN	KO,	B	.	However,	two-sided	tests	seem	incomplete	in	the	sense	that	if	H	B	=	80	is	rejected	in	favor	of	H	:	()	-1-	Bo,	we	usually	want	to	know	whether	H	:	()	>	Bo	or	H	:	B	<	Bo.	For	instance,	suppose	B	is	the	expected	difference	in	blood	pressure	when	two	treat	ments,	A	and	B,	are	given	to	high	blood	pressure	patients.	(5)	The
study	of	the	interplay	between	numerical	and	statistical	considerations.	and	the	risk	of	all	possi	simple	example	in	which	ble	decision	procedures	can	be	computed	and	plotted.	Hint:	(b)	Because	(X1,	Y1	)	has	a	density	you	may	assume	that	'if/	>	0,	(f�	>	0,	IPl	<	1.	When	So	contains	more	than	one	point,	80	and	H	are	called	composite.	(a)	lilt	II	=	0	iii	It
=	0	((cb)	llah1hll	=	lalll	I	is	such	that	!Jhm	-	hn	II	--->	0	as	there	exists	h	E	1i	such	that	ll	hn	-	h	ll	�	0.	:::::>	n	-	l_	,	,	,	I	•	•	'	l	,	j	'	'	'	.	SIDAK,	Theory	of	Rank	Tests	New	York:	Academic	Press,	1	967.	The	coefficients	of	skewness	and	kurtosis	(see	(A.	This	can	be	thought	of	as	a	problem	of	comparing	the	efficacy	of	two	methods	applied	to	the	members	of
a	certain	population.	New	York:	Chelsea,	1967.	A.	If	h	:	Rd	�	for	izl	<	z)	z	Pr(Z	>	z	)	z	Pr(Z	::0:	z)	z	.50	.45	.40	.35	.30	.25	.20	.1	5	.10	0	.	is	point	mass	at	'	�	3"	n	0	What	the	second	of	these	examples	suggests	is	often	the	case.	The	hypothesis	of	dominant	inheritance	corresponds	to	H	:	p	=	�	with	the	alternative	K	:	p	f.	the	integrals	j	T(x)	tep(x,	e)]	dx
and	j	T(x)	[:ep(x,B)	Chapter	3	dx	are	continuous	functions(3)	of().	(b)	lf01	=	02	=	0	where	U	�	N(O,	1)	with	probability	U	with	the	same	distribution	.	The	argument	given	in	B.6	establishes	that	(B.l0.9)	0	and	the	result	follows.	For	the	normal	measurement	problem	we	have	just	discussed	the	probability	of	coverage	is	independent	of	P	and	equals	the
confidence	coefficient.	(L52)	We	shall	give	the	proof	in	the	discrete	case.	We	then	have	h1	_1_	hz.	'	;	ll	'	l	'	I	'	I	I	1	l	J	'	l	I	i	T(x),	the	denominator	decreasing.	A'(O)	=	Cov(,P(X,	-	0),	f(X,)).	The	answer	will	depend	on	the	model	and,	most	significantly,	on	what	criteria	of	performance	we	use.	�	6.6	6.3	�	6.4	�	6.5	Volume	II	is	expected	to	be	forthcoming	in
2003.	(b)	Using	Bayes	rule	find	the	conditional	distribution	of	X	given	Y	=	y.	Show	that	for	the	Gaussian	linear	model	with	known	variance	D(Y,f.'o)	Jy	-	P.ol2/a,l.	What	value	of	c	gives	sizec>?	1	.3.	,	Yn	)	�	Y,	h(y)	=	A(17)	=	I;�	1	n;	07	1	(	�;	)	1	(0	0.	,	k,	L7-I	,\j	=	1	}	.	is	a	given	number.	,	Xn.	(a)	If	f	and	.,-	are	the	N(B,	aJ)	and	posterior	predictive
distribution.	7,	Show	rigorously	using	(1.2.8)	that	if	in	Example	1.1.1,	D	=	NO	has	a	B(N,	?To	)	distri	bution,	then	the	posterior	distribution	of	D	given	X	=	k	is	that	of	k	+	Z	where	Z	has	a	B(N	-	n,	?To	)	distribution.	(8.10.16)	is	Pythagoras's	theorem	again.	(a)	Show	that	the	only	transformations	h	that	make	E[h(X)	-	E(h(X))J'	up	to	order	1/n2	for	all	,\	>	0
are	of	the	form	h(t)	=	ct2i3	+	d.	449)	or	Hoeffding	(1963).	,	Xn	is	a	sample	from	a	population	with	d.f.	F(x	-	J1.)	where	J1.	For	instance,	suppose	i	s	monotone	increasing	t	distribution,	or	Table	III,	to	find	a	=	0.05.	Royal	Statist.	Bickel	Berkeley	!	Mathematical	Statistics	Basic	Ideas	and	Selected	Topics	Volume	I	Second	Edition	;	'	j	'	1	j	1	'	'	I	'	'	i	I	i	\
Chapter	1	STATISTICAL	MODELS	,	GOALS	,	AND	PERFORMANCE	CRITERIA	1.1	DATA,	MODELS,	PARA	METERS	AND	STATISTICS	1.	Hint:	il	'	p	.	The	results	are	assembled	in	what	is	called	a	2	x	2	contingency	table	such	as	the	one	shown.	The	goals	of	science	and	society,	which	statisticians	share,	are	to	draw	useful	infor	mation	from	data	using
everything	that	we	know.	,	Xn	be	i.i.d.	as	X	�	F	and	let	I'	=	E(X),	jJ(Xt	-	0)	and	T2(0)	Varp¢(X	1	-	0).	L.,	..	L.,	R.	Consider	testing	H	:	81	=	82	=	0	versus	K	:	IJ,	>	0	or	IJ2	>	0.	An	unknown	number	N8	of	these	elements	are	defective.	,	Yn	be	the	i.i.d.	survival	times	of	a	sample	of	patients	receiving	an	experimental	treatment.	If	n	is	the	total	number	of
applicants,	it	might	be	tempting	to	model	(Nmt,	Nmo	,	Nft	,	Njo)	by	a	multinomial,	M(n,Pmt,Pmo,Pjt	,PJO),	distribution.	,	Xn	)	=	I	2a2	(x,	-	JL)2	+	n	(x,	-	f3x	_	,	-	(I	-	/3)1'	)2	L	i=	,	•	2	We	include	this	example	to	illustrate	that	we	need	not	be	limited	by	independence.	Then,	q(x	1	+	x2,0)	=	r(x,	,	O)	+	r(x,,	O),	and	hence,	[r(x�	,	O)		r(O,	0)]	+	[r(x2,	0)	-	r(O,
0)]	=	r(x1	+	x2,	0)	-	r(O,	0).	Suppose	that	we	know	from	past	experience	that	a	fixed	proportion	Bo	=	0.3	recover	from	the	disease	with	the	old	drug.	Po	)	distribution	and	(	x,,	Y;),	1	<	i	<	n,	be	i.i.d.	Let	81,	82	>	0	and	H	be	as	above.	Example	4.7.2.	known.	Minimum	Distance	EstimatesPermutation	TestsEstimation	of	Irregular	ParametersStein	and
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model,	if	the	design	matrix	has	rank	p,	then	{30	as	defined	by	(6.4.15)	is	consistent.	2.4.4	The	EM	(	Expectation/Maximization)	Algorithm	There	are	many	models	that	have	the	following	structure.	Example	1.5.5.	Suppose,	a	0}.	�J.ti1	•	•	•	t�,.	Show	that	ep(X	,	)	=	O.	(a)	X	is	an	unbiased	estimate	of	X	=	�	L�	1	Xi-	'	,	,	•	,	'	'	I	I	'	I	Problems	Section	3.6
and	205	Complements	(b)	The	variance	of	X	is	given	by	15.	Show	that	the	conditional	distribution	of	(6,	Xn	+	1	,	.	In	each	of	the	preceding	examples	of	a	Poisson	process	N(t)	represents	the	number	of	times	an	..event"	(radioactive	disintegration,	arrival	of	a	customer)	has	occurred	in	the	time	from	0	to	t.	Suppose	further	that	.	B	y	(A.l	4.20)	we
conclude	that	.	In	Example	with	X	and	Y	distributed	as	N(l'	+	�,	k,"	in	Example	1.1.1	lead	to	(Problem	1.3.18).	For	a	review	of	the	ele	mentary	properties	of	matrices	needed	in	its	formulation,	we	refer	the	reader	to	Section	BJO.	,	Xn)	is	a	sample	from	a	population	with	density	f(x,	B)	�	9	lOa	(X	-	p)	0	for	some	nonzero	y.	By	the	Neyman-Pearson	lemma
this	is	the	largest	power	available	with	a	level	et	test.	The	Graduate	Division	of	the	University	of	California	at	Berkeley	attempted	to	study	the	possibility	that	sex	bias	operated	in	graduate	admissions	in	1973	by	examining	admissions	data.	.'	.i	'	1	'	i	•	PjY	=	y,	Z	=	z]	(�)	p'(l	-	p)"-'	�	pY(I	-	p)"-'	(�)	P'	(	l	-	p)"-'	I	(�)	-	-,-c�	;	.	For	a	fuller	treatment	of
these	introductory	aspects	of	Hilbert	space	theory,	see	Halmos	(	1951	),	Royden	(1968),	Rudin	(1991),	or	more	extensive	works	on	functional	analysis	such	as	Dunford	and	Schwartz	(1964).	Nonparametric	Inference	for	Functions	of	One	Variable.	Using	Problem	4.5.6,	we	find	that	a	competing	lower	confidence	bound	is	J.1.	(X)	=	X(k)•	where	X(l)	:S
X(2)	:S	·	·	·	:S	X(n	denotes	)	2	the	ordered	X,,	.	Using	the	cen	tral	limit	theorem,	Slutsky's	theorem,	and	the	foregoing	arguments,	we	find	(Problem	5.3.28)	that	if	n	t	fn	A,	0	<	A	<	1,	then	-	8"	",	N	(o	(1	-	A)u1	+	>.u�	'	Au1	+	(1	-	A)u�	)·	314	Asymptotic	Approximations	It	follows	that	if	111	=	n2	or	af	a�,	then	the	critical	value	t,1-2(1	approximately
correct	if	H	is	true	and	the	X's	and	Y's	are	not	normal.	1	)	where	V	denotes	the	gradient,	Arguing	heuristically	again	we	are	led	to	estimates	B	that	solve	v8p(X,	e)	=	o.	(b)	P(X	<	2	I	y	=	1).	We	find	•	c(B)	=	�	(-Jt-2	,	Jt	-	3	)	T,	and	from	Example	1.6.5	I	T	2	2	·	A	(1/	)	=	;zn	(	-ryl/'12	,	'1,	/2	'12	-	1/'12)	.	=	2:	2)	are	l	I	'	5.	The	LR	statistic	for	H	:	IL	with	w	1	:J
wo	is	wo	}	E	wo	versus	K	:	IL	E	w	1	-	wo	D(Y	,	Ji	0)	-	D(Y,	Ji1	)	where	j1,1	is	the	MLE	under	w	1	.	Volume	II	covers	a	number	of	topics	that	are	important	in	current	measure	theory	and	practice.	As	in	Example	2.2.6,	letXi,	i	=	1,	.	(I)	For	each	t	E	(0,	oo),	the	powerfunction	(3(1:1)	=	Eo	61	(X	)	is	increasing	in	0.	For	8	E	80	,	the	likelihood	equations	(6.4.3)
become	+	n12	)	rh	(nu	+	n2!	)	Tf2	(nu	whose	solutions	are	Tf1	'T/2	=	(n21	+	n22)	(	1	-	if!	)	(n12	+	n22)	(6.4.5)	(	1	-	fh)	(	nn	(nu	+	n	12	)	/n	+	n21	)	jn,	(6.4.6)	the	proportions	of	individuals	of	type	A	and	type	B,	respectively.	(X	.	As	a	function	of	8,	D(80)	9)	measures	the	(population)	discrepancy	between	8	and	the	true	value	80	of	the	parameter.	HUBER,
P.,	"Robust	Statistics:	JAECKEL,	L.	we	start	by	finding	the	density	of	c	1	,	.	5	415	General	ized	Linear	Models	Formally	if	w0	is	a	GLM	of	dimension	p	and	w1	of	dimension	q	with	canonical	links,	then	�(ji,0	,	ji,	1	)	is	thought	of	as	being	asymptotically	x;	-	q	.	The	data	in	the	first	sample	are	N(O,	1)	and	in	the	second	they	are	N(O)a2)	where	a2	takes	on
the	values	I,	3,	6,	and	9,	as	indicated	in	the	plot.	Figure	2.4.1	illustrates	the	process.	If	Ni	is	the	number	of	offspring	of	type	i	among	a	total	of	n	offspring,	then	(	Nb	.	information,	in	the	context	of	a	model	P	=	For	instance,	suppose	that	in	Example	1.1.1	we	had	sampled	the	manufactured	items	in	order,	recording	at	each	stage	whether	the	examined
item	was	defective	or	not.	DOI	link	for	Mathematical	StatisticsMathematical	Statistics	book	Most	of	the	problems	are	assigned	in	the	required	textbook:	Bickel,	Peter	J.,	and	Kjell	A.	The	fundamental	heuristic	is	typically	the	following.	Then	we	say	8	solving	�	w(X,11)	�o	(2.1	.4)	is	an	estimating	equation	estimate.	I	Section	1.2	13	Bayesian	Models
Thus,	the	resulting	statistical	inference	becomes	subjective.	Establish	(5.3.11).	Although	estimation	loss	functions	are	typically	symmetric	in	v	and	a,	asymmetric	loss	functions	can	also	be	of	importance.	,	Xn	be	i.i.d.	.N(B,	1).	The	same	model	also	arises	naturally	in	situation	(c).	(a)	Let	(	Nu'	Nl2·	N21	'	N22	)	rv	M	(	n,	Bu	(}12,	(}2	1	'	022	)	as	in	the
contingency	table.	Testing	Independence	of	Classifications	in	Contingency	Tables	Many	important	characteristics	have	only	two	categories.	-	J'	'	!'	(1)	Narrow	classes	of	procedures	have	been	proposed	using	criteria	such	as	con	siderations	of	symmetry,	unbiasedness	(for	estimates	and	tests),	or	level	of	sig	nificance	(for	tests).	''	'	'	'	18,	In	the	gross
error	model	(3.5.2),	show	that	(a)	If	h	is	a	density	that	is	symmetric	about	zero,	then	J-.t	is	identifiable.	Life	testing.	The	argument	is	left	to	the	problems	as	are	some	numerical	applications.	,	Xn,	where	"	is	known.	k	when	the	prior	distribution	is	beta,	i	Let	X1,	.	Suppose	X1	and	X2	are	independent	exponential	£(A)	random	variables.	,	Xn	be	i.i.d.	where
X	=	(	U,	V,	W),	P[U	=	a,	V	=	b,	W	=	c]	9.	We	next	apply	the	duality	theorem	to	MLR	families:	Theorem	4.5.1.	Suppose	X	�	Po	where	{Po	:	8	E	6}	is	MLR	in	T	=	T(X)	and	suppose	that	the	distribution/unction	Fo(t)	ofT	under	Po	is	continuous	in	each	of	the	variables	t	and	B	when	the	other	is	fixed.	approximately	has	a	x;-	q	distribution	for	large	n	,	we
define	Bj	=	9j	(	8),	j	=	1	,	.	1	05).	(B.I.8)	=	pz	z	pz	z	Thus,	when	Pz	(	z)	>	0,	the	conditional	expected	value	of	Y	is	finite	whenever	the	expected	value	is	finite.	Therefore,	=	.	8	P	rediction	Interva	ls	253	future	GPA	of	a	student	or	a	future	value	of	a	portfolio.	Minimax	procedures	and	symmetry	As	we	have	seen,	minimax	procedures	have	constant	risk	or
at	least	constant	risk	on	the	"most	difficult"	B.	,	T(X(B)	)	Co,	T(X)	T((B+l)	(t-a))•	where	T(t)	<	·	·	·	<	T(	B+l)	are	the	ordered	T(X),	T(X(	1	)),	.	Let	0	<	8o	<	8,	<	1	.	By	varying	the	assumptions	we	obtain	parametric	models	as	with	(l),	(3)	and	(4)	above,	semiparametric	as	with	(l)	and	(2)	with	F	arbitrary,	and	nonparametric	if	we	drop	(I)	and	simply	.treat
the	Zi	as	a	label	of	the	completely	unknown	distributions	of	Yf.	Iden	tifiability	of	these	parametrizations	and	the	status	of	their	components	as	parameters	are	D	discussed	in	the	problems.	THOMAS,	Elements	of	Information	Theory	New	York:	Wiley,	1991.	=	I,	2,	the	..-.	I	.4)	Bayes'	Rule	whenever	the	denominator	of	the	right-hand	side	is	positive.	The
(f11	G)	parametrization	of	Example	1.1.2	is	now	well	defined	and	identifiable	by	(	1	.	(b)	Show	that	XHL	is	translation	equivariant	and	antisymmetric.	Often	the	final	simplification	is	made.	Derive	the	formula	(6.	3.5.2	Interpretability	Suppose	that	in	the	normal	N(p,	.'	)-11	2	=	z,I/2	We	can	now	use	the	MLE	f;l/2,	which	as	we	shall	see	later	(Section	5.4)
is	for	n	large	a	more	precise	estimate	than	Xf&	if	this	model	is	correct.	Deduce	from	(a)	that	E(X,	I	Sn)	=	·	·	·	=	E(Xn	I	Sn)	and,	hence,	that	E(Sm	I	Sn)	=	(m/n)Sn.	526	Additional	Topics	in	Probability	and	Analysis	N.	=	=	Loss	function.	An	important	example	is	the	class	of	procedures	that	depend	only	on	knowledge	of	a	sufficient	statistic	(see	Ferguson,
1	967;	Section	3.4).	N(TJ,	r2),	respectively.	,	(	(n	-	1	)t/n,	t].	The	x	test	is	equivalent	to	rejecting	(two-sidedly)	if,	versus	K	:	P(A	I	and	only	if,	Next	we	consider	contingency	tables	for	two	nonnumerical	characteristics	having	a	and	b	states,	respectively,	a	,	b	�	2	(e.g.,	eye	color,	hair	color).	-	Yr	·	2	+	(n	r)Yrl/B	is	x	with	2r	degrees	of	freedom.	Bickel
[email	protected]	stat.berkeley.edu	Kjell	Doksum	[email	protected]	I	•	•	I	l	I	i	I	I	PREFACE	TO	THE	FIRST	EDITION	This	book	presents	our	view	of	what	an	introduction	to	mathematical	statistics	for	students	with	a	good	mathematics	background	should	be.	Hint:	Use	the	central	limit	theorem	for	the	critical	value.	As	an	example,	suppose	that	X1	,	.	•
Dn	=	sup	IF(x)	-	Fo(x)l-	x	It	can	be	shown	(Problem	4.1.7)	that	Dn.	which	is	called	the	Kolmogorov	statistic,	can	be	writren	as	Dn	=	··	_max	max	>-l,	.	In	Example	1.1.2	with	assumptions	(l)-(4)	we	have	implicitly	taken	e	=	R	X	R+	and,	if(}	=	(p,,	a2),	Pe	the	distribution	on	R"	with	density	x	,;JL)	where	cpis	the	standard	normal	density.	n	Var(X1	(A.	We
have	seen	that	smooth	transfor	mations	h(X)	are	also	approximately	normally	distributed.	(b)	Assume	that	if	X	and	Y	are	any	two	random	variables,	then	the	family	of	condi	tional	distributions	of	X	given	Y	depends	only	on	the	joint	distribution	of	(X,	Y).	In	addition	we	feel	Chapter	10	on	decision	theory	is	essential	and	cover	at	least	the	first	two
sections.	Let	F,	F-(x),	and	F+	(x)	be	as	in	Examples	4.4.6	and	4.4.7.	Then	disstribution-free	confidence	interval	for	the	pth	quantile	a	distribution-free	confidence	region	for	Xp	valid	for	all	-	P(F	-(x)	<	F(x)	<	F'+(x))	for	all	x	E	(a,	b)	=	1	-	a.	given	l::	X,	As	Figure	B.2.2	indicates,	the	beta	family	provides	a	wide	variety	of	shapes	that	can	approximate	many
reasonable	prior	distributions	though	by	no	means	all.	D	Example	1.5.4.	Let	X1,	1	Xn	be	independent	and	identically	distributed	random	vari	ables	each	having	a	normal	distribution	with	mean	fL	and	variance	u2,	both	of	which	are	unknown.	Optimality	claims	rest	on	a	more	refined	analysis	involving	a	reparametrization	from	8	to	')'	=	vn(	8	-	8o).	S
imilarly,	we	may	want	an	interval	for	the	Section	4	.	10.	3	.77	x	(nitrogen)	y	(yield)	1	67.5	Hint:	Do	the	regression	for	/-Li	=	(31	+	f32zil	+	f32zil	+	f33zi2	where	zn	=	Xi	-	x,	Zi	=	log	xi	-	*	I::1	log	xi	.	m	T(Y)	=	L	Yll,	l=l	m	·	·	·	,	m	m	L	Ynl,	L	YI1	•	·	·	·	L	Y;l	l=l	l=	I	l=l	T	,	Next	suppose,	as	in	Example	1.6.10,	that	tLi	=	(}I	+	82Zi7	af	=	83(81	+	82zi	)	2	1	Zt	<
·	'	·	<	Zn	where	z1	,	Zn	are	given	constants.	,	B4)	distribution.	Here	J	xdF(x)	denotes	J	xp(x)dx	in	the	continuous	case	and	L:	xp(x)	in	the	discrete	case.	(i)	The	joint	distribution	of	Y1	,	1	•	[	p	n!	(28)'	(n	-	r)!	ex	(ii)	The	distribution	of	II:	:	l	.	Set	�	�	g(f")	and	v(!")	�	(a)	Show	that	the	likelihood	equations	are	..;:...	Note	that	we	really	want	to	estimate	the
function	Jl(	•	)�	our	results	will	guide	the	selection	can	estimate	(3	from	our	observations	Y;	of	g((j,	z;)	of	doses	of	drug	for	future	patients.	Let	X	�	U(O,	8)	be	the	uniform	distribution	on	(0,	8).	Suppose	X1,	.	(b)	Calculate	the	smallest	n	needed	to	bound	the	length	of	the	95%	interval	of	part	(a)	Compare	your	result	to	the	n	needed	for	by	0.02.	Assume
the	linear	regression	model	with	p	future	observation	Y	to	be	taken	at	the	pont	z	.	F.,	P.	<	a:	15,	the	probability	of	your	deciding	to	close	is	also	<	0.01.	,	Xn)	=	c(n	+	a,	m)	.	Finaliy,	Chapter	6	is	devoted	to	inference	in	multivariate	(multi	parameter)	models.	Next	use	the	central	limit	theorem	and	Slutsky's	theorem.	l	2.7)	is	called	the	cumulant
generating	function	of	X.	,	Xn	12.	I	'	l	Section	B.ll	537	Problems	and	Complements	Problems	for	Section	B.S	1.	,	Xn),	where	Xi	is	1	if	the	ith	patient	recovers	and	0	otherwise.	(b)	L	is	the	space	of	all	X	+	(	Ez:l,	Ezy	)T(	Z	-	E..'(	Z))	.	Suppose	(A4')	holds	as	well	as	(A6)	and	1(8)	<	oofor	all	8.	•	I	.,	7.	1	.5)	Yi	B	+	ei,	i	where	ei	=	cei-	l	+	Ei,	i	=	1	,	.	I,	4th	ed.
See	Problem	8.3.8.	,	I	I	•	References	Hoe!,	Port,	and	Stone	(1971)	Chapter	8,	Section	8.1	Parzen	(1960)	Chapter	5,	Section	3;	Chapter	8,	Sections	2-3	Rao	(1973)	Section	2b.4	A.13	SOME	CLASSICAL	DISCRETE	AND	CONTINUOUS	DISTRIBUTIONS	By	definition,	the	probability	distribution	of	a	random	variable	or	vector	is	just	a	probability	measure
on	a	suitable	Euclidean	space.	We	can	use	Problem	B	.2.4	to	compute	,	I	'	:	•	'Yi	n	�	E(Vn)'	-	2V2	(2n)l	Vn	,	'Y2n	1	•	�	E(V	-	n)4	(2n)2	_	3�	12	n·	1	I	'	Therefore,	Fn	(x)	•	!,	•	'	•'	'	'.	,.....,	•	(a)	If	F	is	N(Jl,	a5)	with	"5	known,	give	level	(I	-	a)	lower	and	upper	prediction	bounds	for	Xn+l·	(b)	If	F	is	N(p,,	a2)	with	a2	unknown,	give	level	(1	bounds	for	Xn+l	·	-
a:)	lower	and	upper	prediction	(c)	IfF	is	continuous	with	a	positive	density	f	on	(a,	b),	-oo	<	a	<	b	<	oo,	give	level	(I	-	a)	distribution	free	lower	and	upper	prediction	bounds	for	Xn+	I	·	3.	+	o(l)	and	that	if	own	(X1	,	.	,	k,	we	get	radically	different	best	tests	depending	on	which	(}i	we	assume	to	be	Ow	0	under	H.	and	Probability,	1,	University	of	California
Press,	197-206	(1	956).	SAVAGE.,	L.	L	Doksum,	Kjell	A.	,	Xn	-..	In	this	edition	we	pursue	our	philosophy	of	describing	the	basic	concepts	of	mathemat	ical	statistics	relating	theory	to	practice.	Methods	of	Estimation.	1	)	n	can	be	any	integer	>	0	whereas	8	may	be	any	number	in	[0,	l	]	.	Suppose	X	is	aN(B,	1)	sample	and	consider	the	decision	rule	J,,,(X)
=	-1	if	X	<	r	0	if	r	<	X	<	s	1	if	X	>	s.	If	n	is	small	compared	to	the	size	of	the	city,	(A.	'	•	•	I	l	I	'	!	i	•	l	i	I	!	•	'	'	'	'	I	I	I	I	1	I	Section	4.1	X	Because	values	of	219	Introduction	X.	(	n,	B)"	for	"the	The	symbol	p	as	usual	stands	for	a	frequency	If	anywhere	below	p	is	not	specified	explicitly	for	some	value	of	x	it	shall	be	assumed	that	p	vanishes	at	that	point.
Similarly,	we	define	O(S)	=	sup(O	:	j(O,a)	=	S	-	1}	where	j	(	8,	a)	is	given	by,	•	Then	0	(S)	is	a	level	(I	-	a)	UCB	for	0	and	when	S	<	n,	0(S)	is	the	unique	solution	of	�(	�	)	s	or(!	-	o)n	-r	=	a.	and	sufficient	statistic	T	Tj	,	j	=	1,	.	Bayesian	Predictive	Distributions	Suppose	that	()	is	random	with	()	"'	1r	and	that	given	()	=	e,	X1	,	,	Xn	+	l	are	i.i.d.	p(X	I	e).	Let	p
:	X	X	e	�	R	where	.	It	will	often	be	more	convenient	to	work	with	unrestricted	parameters.	are	independently	distributed	as	x2	with	2	degrees	,	Yr	is	an	exponential	family	with	density	of	freedom,	and	the	joint	density	of	Y1	,	•	.	Let	and	where	).*	maximizes	iJnew	=	iJ(>-•	)	t:fij	(	>-)	-	A	(i)(>.))	.	,	Xn)	is	a	sample	drawn	without	replacement	from	an
unknown	finite	population	{	x1,	.	If	A(y)	is	a	..small"	cube	surrounding	y	and	we	let	V(B)	denote	the	volume	of	a	set	B,	then	V	(g	1	(A	(Y)"-')-)	P[g(XJ	E	A(y)J	P[X	E	g-	1	(A(y)_	)	]	.	,	Nk)	�	M(n,	8,,	.	Suppose	u1,	.	Let	Xi	denote	the	difference	between	the	treated	and	control	responses	for	the	ith	pair.	More	generally,	a	function	q	:	8	-----+	N	can	be	identified
with	a	parameter	v(	P)	iff	Po,	�	Po,	implies	q(Bl)	�	q(82)	and	then	v(Po	)	q(B).	QA276.B47	2001	00-031377	519.5-dc21	Acquisition	Editor:	Kathleen	Boothby	Sestak	Editor	in	Chief:	Sally	Yagan	Assistant	Vice	President	of	Production	and	Manufacturing:	David	W.	(d)	We	want	to	compare	the	efficacy	of	two	ways	of	doing	something	under	similar
conditions	such	as	brewing	coffee,	reducing	pollution,	treating	a	disease,	producing	energy,	learning	a	maze,	and	so	on.	But	given	a	parametrization	(}	-----+	Po,	(}	is	a	parameter	if	and	only	if	the	parametrization	is	identifiable.	Next	we	note	how	we	can	apply	the	information	inequality	to	the	problem	of	unbiased	estimation.	,	(	Zn,	Yn),	this	leads	to	the
commonly	considered	l(P,	a)	]	=	-	n	L(�t(z;)	-	a	(z,))2,	n	.=l	J	n-1	times	the	squared	Euclidean	distance	between	(a(zl	),	.	=	1.3.1	Components	of	the	Decision	Theory	Framework	As	in	Section	1.1,	we	begin	with	a	statistical	model	with	an	observation	vector	X	whose	distribution	P	ranges	over	a	set	P.	,	Xn+k)	given	xl	=	X	J	,	.	where	0	<	8	<	1.	3	and	Z	1
+y1cr	p	(Y)	-	vny	-	has	a	N(O,	1)	distribution	and	is	independent	of	V	(n	-	1)s2	/cr2	,	which	has	a	x;,_	1	distribution.	I	I	l	3)	I	'	and	'	(A.	Wiley	&	Sons,	1986.	=	tt.	To	study	the	relation	between	the	two	characteristics	w	e	take	a	random	sample	o	f	size	n	from	the	population.	For	each	simulation	the	two	samples	are	the	same	size	(the	size	indicated	on	the
x-axis),	af	=	a�.	Proof.	0.0	tn_	2	(1	-	cr)}	do	not	have	approximate	level	o:.	The	correlation	inequality	is	equivalent	to	the	statement	(A.l	l.l9)	Equality	holds	if	and	only	if	X2	is	linear	function	(X2	=	a	+	bX1	,	b	#	0)	of	X1	·	l	j	Section	A.12	tion	459	Moment	and	Cumulant	Generating	Functions	If	X1	,	.	The	result	might	be	a	density	such	as	the	one	marked
with	a	solid	line	in	Figure	B.2.2.	If	we	were	interested	in	some	proportion	about	which	we	have	no	information	or	belief,	we	might	take	B	to	be	uniformly	distributed	on	(0,	1),	which	corresponds	to	using	the	beta	D	distribution	with	r	=	s	=	1.	Example	4.2.1	is	of	this	D	form	with	T(x)	=	..fiixfu	and	ry(p.)	=	(..fiiu)p.,	where	u	is	known.	(c)	Under	the
assumptions	of(b)	above,	show	that	there	is	an	increasing	function	Q•(t)	such	that	ifY;'	=	Q•(Y;),	then	f'i*	=	9	({31	Zi)	+	£i	for	some	appropriate	€i.	Then	(	�·	1	X;	-	n	and	I(B)	�	Var	�"-1	X;	•�	o	0	•-	o	)	n	=	-nO	�	B'	o·	I	0	Section	3.4	181	Unbiased	Estimation	and	Risk	Inequalities	Here	is	the	main	result	of	this	section.	Math	Statist.	The	poste	rior
predictive	distribution	Q(	·	I	x)	of	Xn+	l	is	defined	as	the	conditional	distribution	of	Xn+l	given	x	=	(	x	i	.	IPI	�	Deal	directly	with	the	cases	1.	(Pareto	density)	(d)	f(x,	8)	=	v'ex	v'0-	1	,	0	<	x	<	1,	8	>	0.	This	is	a	rank	2	canonical	exponential	family	generated	by	T	=	(I;	log	X,,	I:	X,),	h(x)	=	x-	1	,	with	'	I,	'	I	'	by	Problem	2.3.2(a).	Evidently,	the	Bayes	risk	is
now	the	same	as	in	Example	3.3.3	with	a2	=	M.	For	a	generalization	of	the	notion	of	moment	generating	function	to	random	vectors,	see	Section	B.S.	The	function	Kx(s)	=	log	Mx	(s)	(A.	Thus,	if	there	are	k	different	brands,	there	are	k!	possible	rankings	or	actions,	one	of	which	will	be	0	announced	as	more	consistent	with	the	data	than	others.	Hint:
P(To	>	T)	=	J	P(To	2:	t	I	T	=	t)J.(t)dt	where	fe(t)	is	the	density	of	Fe(t).	t	yV/k]	is	increasing	12.	(See	also	Problem	h.	Deduce	that	X,	Xu	,	X	are	unbiased	estimates	of	the	center	of	symmetry	of	a	symmetric	distribution.	e-'>.k	p(k)	=	k!	(A.I3.9)	for	k	=	0,	1,	2,	.	Thus,	Xn+l	-	9	and	9	are	uncorrelated	and,	by	Theorem	B	.4.	I	0.3)	and	(A.IO.	Then	combine	the
two	tables	into	one,	and	petfonn	the	same	test	on	the	resulting	table.	In	this	section	we	derive	necessary	and	sufficient	conditions	for	existence	of	MLEs	in	canonical	exponential	families	of	full	rank	with	£	open	(Theorem	2.3.1	and	Corol	lary	2.3.1).	(d)	Use	(c)	to	show	that	if	t,	E	(a,	b),	then	B	is	not	unique.	Let	p(x	I	B)	=	exp{-(x	-	8)},	0	<	B	0,	B	>	0	0
otherwise.	Show	that	if	f(x)	(e)	Suppose	that	the	d.f.	F(x)	of	X,	is	continuous	and	that	f	(O)	l	F'	(x)	exists,	then	•	\	'	•	=	F'(O)	exists.	Show	that	under	the	assumptions	of	Theorem	4.3.2,	1	-	6t	is	UMP	for	testing	H	:	8	>	Bo	versus	K	:	8	<	Bo.	.	When	m	m/(m	-	2),	and	when	m	>	4,	Var	X	=	2m2	(k	+	m	-	2)	k(m	-	2)2(m	-	4)	>	2,	E(X)	=	.	However,	in	any	case,
critical	values	yielding	correct	type	I	probabilities	are	easily	obtained	by	Monte	Carlo	methods.	,	(a)	Construct	a	test	of	H	:	B	=	1	versus	K	:	B	>	with	approximate	size	o:	using	a	complete	sufficient	statistic	for	this	model.	Hint:	Argue	by	contradiction.	This	is	part	of	a	general	phenomena	we	now	describe.	Similarly,	the	central	limit	theorem	tells	us	that
oo,	,,	is	as	above	and	then	if	n	•	Ep]Xf]	(z	)	(5.1	.7)	�	where	4:1	is	the	standard	normal	d.	Expectations	Po	will	be	written	Eo.	Distribution	functions	ca1culated	under	the	assumption	that	X	will	be	denoted	by	F(·,	0),	density	and	frequency	functions	by	p(·,	0).	In	this	example,	we	can	achieve	this	by	the	reparametrization	k	.\j	=	e0'	/	L	e0'	,j	j=l	=	1,	.	(	1
.2.8)	8	and	X	are	both	continuous	or	both	discrete	this	is	precisely	Bayes'	rule	applied	to	the	joint	distribution	of	(II,	X)	given	by	(1.2.3).	If	the	error	distribution	is	normal,	X	is	the	best	estimate	in	a	variety	of	senses.	Therefore,	a2	has	the	smallest	posterior	risk	and,	if	0"	is	the	Bayes	rule,	o'(O)	=	a,.	13.	Set	U;	=	F(Xi	)	,	i	=	1	,	.	Uniformly	most	accurate
(UMA)	bounds	turn	out	to	have	related	nice	properties.	,	Tp)	T.	where	Y;	has	density	h(y	I')	and	(X,',	Y;)	are	i.i.d.	Note	that	this	implies	the	possibly	unreasonable	assumption	that	committing	a	gross	error	is	independent	of	the	value	of	x•.	(a)	Show	that	the	Bayes	rule	is	equivalent	to	"Accept	biocquivalence	if	E(>.	16	Statistical	Models,	Goals,	and
Performance	Criteria	Chapter	1	I	THE	DECISION	THEORETIC	FRAMEWORK	1.3	'	'	Given	a	statistical	model,	the	information	we	want	to	draw	from	data	can	be	put	in	various	forms	depending	on	the	purposes	of	our	analysis.	'	'	It	has	of	90,	91,	is	much	better	defined	than	its	complement	and/or	the	distribution	of	statistics	T	under	80	is	easy	to
compute.	Then	o(X,Oo)	is	a	level	a	test	for	H	:	0	�	Oo	versus	K	:	0	>	Oo.	Because	J"(X,	00)	is	UMP	level	a	for	H	:	(}	=	Bo	versus	K	:	B	>	Bo,	for	fJ	1	>	(}0	we	must	have	Ee.	(o(X,	Oo))	<	Ee,	(o"(X,	Oo))	or	Pe,	[O(X)	>	Oo]	<	Pe,	[O"	(X)	>	Oo].	A	meteorologist	wants	to	estimate	the	amount	of	rainfall	in	the	coming	spring.	Suppose	that	{3(0)	depends	on	()
only	through	q(	0)	and	is	a	continuous	increasing	function	of	q(	0).	The	correlation	coefficient	roughly	measures	the	amount	and	sign	of	linear	relationship	between	X1	and	X2.	,	(	tn,	Yn),	n	>	4,	on	a	population	of	a	large	number	of	organisms.	Tt>	test	the	validity	of	the	linkage	model	we	would	take	8o	{	G	(2	+	ry)	,	i	(	l	ry)	,	i	(1	-	TJ)	,	iTJ)	:	0	:;	TJ	S	1	}	a
"one	dimensional	curve"	of	the	three-dimensional	parameter	space	e.	DoKsuM,	K.	.	We	shall	denote	it	by	Fk	,m·	Next,	we	introduce	the	t	distribution	with	k	degrees	offreedom,	which	we	shall	denote	by	7,.	Therefore,	by	the	basic	property	of	maximum	contrast	estimates,	for	each	B	f>	B0,	and	<	>	0	there	is	o(B)	>	0	such	that	Eo,	inf{p(X,	B')	-	p(X,	B0)	:
B'	E	S(B,	i	(B)))	>	.\}	c	T	U	S(B,	J	(B,	))	j=	1	Now	inf	1	n	-n	L	{p(X.	where	x	E	R	and	(}	E	R.	•	1	19.	A	final	major	topic	in	Volume	II	will	be	Monte	Carlo	methods	such	as	the	bootstrap	and	Markov	Chain	Monte	Carlo.	5.	Once	the	level	or	critical	value	is	fixed,	the	probabilities	of	type	II	error	as	8	ranges	over	81	are	determined.	(	I	)	We	define	set	of	the
form	A1	x	·	·	·	x	Notes	for	Section	A.7	'	f	'	1	(	I	)	Strictly	speaking,	the	density	is	only	defined	up	to	a	set	of	Lebesgue	measure	0.	5.3.1	The	Delta	Method	for	Moments	•	•	•	We	begin	this	section	by	deriving	approximations	to	moments	of	smooth	functions	of	scalar	means	and	even	provide	crude	bounds	on	the	remainders.	8	.2)	n+	1.	12	30.82	7.7	1
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Show	that	under	independence	the	conditional	distribution	of	Nii	given	R;_	Ci	=	Ci,	i	=	1,	2	is	Jt(ci,	n,	ri)	(the	hypergeometric	distribution).	In	designing	a	study	to	compare	treatments	A	and	B	we	need	to	determine	sample	sizes	that	will	be	large	enough	to	enable	us	to	detect	differences	that	matter.	In	addition	to	the	parameters	of	interest,	there	are
also	usually	nuisance	parameters,	which	correspond	to	other	unknown	features	of	the	distribution	of	X.	,	xi,.	1	)	and	(A8.2).	P.	Show	that	any	T	such	that	X(n)	i	<	T	<	X(l)	+	i	is	a	maximum	likelihood	estimate	of	8.	Then	P	is	parametrized	by	B	=	(f11	�.	The	set	{0	:	qo	<	q(O)	<	q1}	is	our	indifference	region.	Thus,	(5.3.	13)	we	see	that	a	first
approximation	to	the	variance	of	h(	X)	is	finding	a	variance	stabilizing	transformation	is	equivalent	to	finding	a	function	h	such	that	for	all	J-l	and	a	appropriate	to	our	family.	3.7	'	•	NOTES	Note	for	Section	3.3	(1)	A	technical	problem	is	to	give	the	class	S	of	subsets	of	:F	for	which	we	can	assign	probability	(the	measurable	sets).	Po,	[S	>	j]	a.	1.1.2	I	i
Parametrizations	and	Parameters	----t	To	describe	Pwe	use	a	parametrization,	that	is,	a	map,	(}	Po	from	a	space	of	labels,	the	parameter	space	8,toP;	or	equivalently	write	P	=	{Po	:BE	8}.	Hint:	Note	that	/io	�	X	if	X	<	Jl.o	and	�	Jl.o	otherwise.	Thus,	(}	is	more	accurate.	(b)	Var(h(X,	Y))	"'	�{[h,	(Jl.t,	1'2))	20'7	n	2	2	(n	+	+2h,	(Jt"	1'2	lh2	(J1.,,	J1.2)pu,
"'2	+	[h2	(J1."	1'2ll	,.n	o	-	)	where	a	a	h1(x,	y)	=	&,h(x,y),	h2(x,y)	=	ayh(x,y)	.	Then	Z	has	a	binomial,	B(n,p),	distribution	and	p(y	I	z)	�	"	•	!I	•	.!	•	•	..	II.	If	we	assume	X1	,	.	The	most	important	H1lbert	space	other	than	RP	is	L2(P)	=	{All	random	variables	X	on	a	(separable)	probability	space	such	that	EX2	<	oo}.	known,	and	()	=	Note	that,
unconditionally,	v(}	has	a	xX	distribution.	Claims	(5.4.42)	and	(5.4.43)	follow.	L.,	AND	G.	•	Then	again,	a	variance	stabilizing	transformation	h	is	such	that	vn(h('/)	-	h('y))	-+	N(o,	c)	(5.3.19)	for	all	f.	For	instance,	suppose	that	the	number	Z	of	defectives	in	a	lot	of	N	produced	by	a	manufacturing	process	has	a	B(N,	0)	distribution.	Similarly,	v(X)	is	called
a	level	(l	-	a	)	upper	confidence	bound	for	v	if	for	every	P	E	P,	P[	v(	X	)	=	v]	>	I	-	o.	Xlll	..	We	do	not	find	this	persuasive,	but	j	if	this	view	is	accepted,	it	again	reason�bly	leads	to	a	Neyman	Pearson	formulation.	EIX1	-	3.	So	it	is	natural	to	consider	8(X)	minimizing	p(X,	8).	LatMANN,	E.	j=2	The	default	assumption,	at	best	an	approximation	for	the	wave
example,	is	that	f	is	the	N(O,	0'2	)	density.	l	.	Hint:	See	part	(a)	of	the	proof	of	Lemma	5.3.1.	4.	jj.(	O	and	then	).	G.	(8.10.14)	Furthermore,	(i)	11(h	I	C)	exists	and	is	uniquely	defined.	�	'	•	I	�	-	(b)	.	Then	whereas	the	Bayes	risk	of	the	Bayes	rule	of	Example	3.2.1	is	--	n	Because	(	o-2	/n	)	/	((	(/2	/n)	+	72)	------>	0	as	72	------>	a2	I	(cr2/n)	+	r2	n	·	oo,	we	can
conclude	that	X	is	minimax.	By	(A.l6.4),	and	are	independent	and	identically	distributed	exponential	random	variables	with	parameter	is	sufficient	for	0.	,	T.-t)	T,	where	T;	(X)	=	I:�	1	l(X,	=	j),	I	:S	j	:S	k.	!	h(a)	is	given	in	part	(b).	if	we	-	,...,_,	ignore	the	data	and	use	the	estimate	()	=	0,	we	obtain	M	SE(O)	=	82.	,	Xn)(x)	=	1(X;	n	.	The	x-axis	denotes	the
size	of	the	smaller	of	the	two	samples.	D	We	return	to	this	question	in	Section	4.3.	Remark	4.1.	From	Figure	4.1.1	it	appears	that	the	power	function	is	increasing	(a	proof	will	be	given	in	Section	4.3).	0\a	co]	-	P[Y	8.	"'	:::;;;::	Problems	for	Section	6.5	1.	J.,	The	Foundation	ofStatistical	Inference	London:	Methuen	&	Co.,	1962.	Hint:	Let	U1	and	U2	be	as
defined	by	(B.4.19)	and	B.4.22,	then	P[X	<	0,	Y	<	OJ	P[U1	<	O,	pU1	+	y'1	-	p2U2	<	OJ	p	-	p	u,	<	0,	u2,	>	r.�=;;	u	y'1	-	p2	=	6.	They	are	determined	by	>.;	=	T;	fn,	1	<	j	:S	k.	There	are	situa	tions	in	which	most	statisticians	would	agree	that	more	can	be	said	For	instance,	in	the	inspection	Example	size	N	1.1.1,	it	is	possible	that,	in	the	past,	we	have
had	many	shipments	of	that	have	subsequently	been	distributed.	Note	that	this	density	coincides	with	the	Student	t	density	with	one	degree	of	freedom	obtainable	from	(B.3.10).	Problem	2.2.1).	Again	it	is	natural	to	translate	this	into	P[Admit	I	Male]	=	Pml	Pml	+	Pmo	=	P[Admit	I	Female]	=	p!I	PJ1	+	PfO	But	is	this	a	correct	translation	of	what
absence	of	bias	means?	K	than	under	H,	it	is	natural	to	reject	H	for	large	is	convenient	to	replace	X	by	the	test	statistic	T(X)	=	foX/	a,	which	tends	to	be	larger	under	It	generates	the	same	family	of	critical	regions.	Because	l	1	Section	4	.	I	.	Problems	such	as	these	lie	in	the	fields	of	sequential	analysis	and	experimental	design.	We	next	give	a	prediction
interval	that	is	valid	from	samples	from	any	population	with	a	continuous	distribution.	(6)	The	study	of	the	interplay	between	the	number	of	observations	and	the	number	of	parameters	of	a	model	and	the	beginnings	of	appropriate	asymptotic	theories.	Similarly,	I	and	II	are	satisfied	for	samples	from	gamma	and	beta	distributions	with	one	parameter
fixed.	30.	Kx	(s)l,�	o	dsJ	is	called	the	jth	cumulant	of	X,	j	>	1.	)	test	exists	and	is	given	by:	Reject	if	'	i	•	•	I'	,	'	(4.2.7)	where	c	=	z(l	-	a)[�6E0	1	�0]!	(Problem	4.2.8).	STUART,	The	Advanced	Theory	of	Statistics,	Vols.	9	L	i	kelihood	Ratio	P	roced	u	res	255	5	5	Example	4.8.3.	Consider	Example	3	.	:�·	('	I	'	tum	determines	what	we	call	H	and	what	we	call
K.	Then	h,(t)	=	f0(t)/S0(t)	and	hy(t)	=	g(t)jSy(t)	are	called	the	hazard	rates	of	To	and	Y.	A.,	"Measures	of	Location	and	Asymmetry,"	Scand.	We	conclude	from	Theorem	2.3.2	that	(2.3.4)	and	(2.3.5)	have	a	unique	solution	with	probability	1.	,	Nk)?	Kolmogorov's	Theorem.	If	the	family	{PfJ	}	satisfies	I	and	II	and	if	there	exists	an	unbiased	estimate	T*	of
1/;(B)	such	that	Varo[T'(X)]	=	[¢'(8)]	2	/I(B)	for	all	B	E	8,	then	T'	is	UMVU	as	an	estimate	of	1};.	,	O)T	and	Eo	=	I,	then	this	test	rule	is	to	reject	H	if	X1	is	large;	however,	if	E0	=j:.	F(x).	If	the	theory	is	false,	it's	not	clear	what	P	should	be	as	in	the	preceding	Mendel	example.	,	Xn	are	i.i.d.	N(p,	a2	)	with	J-l/a	Ao	>	0	known.	EY2	<	oo	(Y	-	p)	+	(I'	-	c)	0
makes	the	cross	product	term	vanish.	Show	directly	using	Problem	B.2.5	that	under	the	conditions	of	the	previous	problem,	if	m/(m	+	n)	-	a	tends	to	zero	at	the	rate	1/(m	+	n)	2	,	then	(1	-	a)	m	E(Bm	'n)	=	,	Var	Bm	'n	=	+	Rm	'n	n	+	m	m+n	where	Rm,n	tends	to	zero	at	the	rate	1/(m	+	n)	2	.	In	general,	to	calculate	the	posterior,	some	variant	of	Bayes'
rule	(B.1.4)	can	be	used.	=	(a)	Find	the	joint	density	of	Y1	and	Y2	.	Specify	the	distribution	of	fi.	(b)	Show	that	the	power	function	of	your	test	is	increasing	in	8.	We	need	only	that	0(P)	is	a	parameter	as	defined	in	Section	1.1.	As	we	saw	in	Section	2.1,	parameters	and	their	estimates	can	often	be	extended	to	larger	classes	of	distributions	than	they
originally	were	defined	for.	n	Hint:	nFx	(x)	=	2:,�	1	l[Fx	(X,)	<	Fx	(x)]	�	n	F_x(x)	=	n	L	1	[-X,	<	x]	=	i==l	nF1	-	u{F-x	(x))	�	�	nFu(F(x))	and	n	L	1	[F_x(	-Xi)	<	F_	x(x)	]	i=l	�	nFr	-	u(F(x))	under	H.	If	w0	is	a	q-dimensional	linear	where	=	=	subspace	of	w	with	q	0	}	)	.	·	Example	·	1.1.3.	Two-Sample	Models.	Much	of	this	material	unfor	tunately	does	not
appear	in	basic	probability	texts	but	we	need	to	draw	on	it	for	the	rest	of	the	book.	0	I	12	Statistical	Models,	Goals,	and	Performance	Criteria	Summary.	,	Section	2.4	Algorithmic	Issues	127	If	m	>	2,	then	the	full	2n-parameter	model	satisfies	the	conditions	of	Theorem	2.3.1.	Let	£	be	the	canonical	parameter	set	for	this	full	model	and	let	8	�	{II	:	II	,	E
R,	82	E	R,83	>	0	}	.	Hint:	�;,•	Lx(TJ)	=	T;	(X)	-	E'IT;(X).	In	that	case,	e	who	se	likelihood	is	on	or	above	some	fixed	value	dependent	on	It	is	often	approximately	true	(see	Chapter	C(x)	is	just	the	set	of	all	the	data.	Thus,	in	Example	1}	and	1.1.1	we	take	(}	to	be	the	fraction	ofdefectives	in	the	shipment,	e	=	{	0,	k	Po	the	'H.(NB,	N,	n)	distribution.	Hint:
Reduce	to	a:1	+a:2	=	a:	by	showing	that	if	0:1	+	0:2	<	a:,	there	is	a	shorter	interval	with	a:1	+	a:2	=	a:.	For	sim	k	2.	Statist.,	42,	I	020--	1034	(	1971).	t!	1	·	·	·	U�,.	'	'	!	As	we	noted	in	Examples	4.1.1	and	4.1.2,	asymmetry	is	often	also	imposed	because	one	"	.	1'	{d)	Suppose	0	has	prior	1r(a1)	0.5	and	(ii)	1'	0.1.	=	=	�	1'·	1r	(a2	)	=	1-	1'·	Find	the	Bayes
rule	when	(i)	3.	Let	the	time	between	the	arrival	of	the	first	and	second	customers.	This	method	requires	computation	of	the	inverse	of	the	Hessian,	which	may	counterbalance	its	advantage	in	speed	of	convergence	when	it	does	converge.	0	I	,	'	522	Additional	Topics	in	Probability	and	Analysis	Appendix	B	It	follows	that	if	l	ilt	II'	=	(/L	It).	In	the
goodness-of-fit	Example	4.1.5,	suppose	that	F0	(x)	has	a	nonzero	density	on	some	interval	(a,	b),	-oo	<	a	<	b	<	oo,	and	consider	the	alternative	with	distribution	function	F(x,	B)	=	Fi!(x),	0	<	B	<	1.	Suppose	that	cri	=	u�	.	But	it	reappears	when	the	data	sets	are	big	and	the	number	of	parameters	large.	This	is	a	consequence	of	Lemma	3.4.1	I(B)	=	Var
[:o	logp(X,	BJ]	and	Chapter	3	!)	L	ao	logf(X;	,	B)	�	[!	logf(X;	,	B)l	=	nh(B).	Example	8.1.2	Let	Y	and	Z	have	the	joint	frequency	function	given	by	the	table	For	instance,	suppose	Z	is	the	number	of	cigarettes	that	a	person	picked	at	random	from	a	certain	population	smokes	per	day	(to	the	nearest	10),	and	Y	is	a	general	health	rating	for	the	same	person
with	0	corresponding	to	good,	2	to	poor,	and	1	to	neither.	I	,	,	8.10.3.2	Projections	on	Linear	Spaces	We	naturally	define	that	a	sequence	hn	E	H	converges	to	h	iff	Jl	hn	-	hi	I	---t	0.	]	t,	(	;';	)	+	log	When	we	use	the	logit	transform	g	(	1r	)	,	we	obtain	what	is	called	the	where	.	It	is	referred	to	as	the	level	"	critical	value.	A3,	A6	11	�	!(II)	is	continuous.	(b)
Suppose	Z1	and	z;	have	a	N(O,	1	and	c(a)	�	[2:;"	r"J-	Show	that	1	1T	().	L�	1	Xf	is	an	optimal	test	statistic	for	testing	H	:	1/.\	<	1/	.\o	versus	(b)	Show	that	the	critical	value	for	the	size	a	test	with	critical	region	[L�-1	Xf	>	k]	is	k	=	X2	n	(	1	-	)	/2>.o	where	X2n	(	1	-	)	is	the	(	1	)th	quantile	of	the	X�n	distribution	and	that	the	power	function	of	the	UMP
level	a	test	is	given	by	-	1	-	G,n(>.x,n(1	-	)/	>.o)	where	G2	n	denotes	the	X�n	distribution	function.	We	show	how	consistency	holds	for	continuous	functions	of	P	E	P}	---t	vector	means	as	a	consequence	of	the	law	of	large	numbers	and	derives	consistency	of	the	MLE	in	canonical	multiparameter	exponential	families.	!	'	'	Summary.	g	is	called	an	affine
transformation	of	Rk	if	there	exists	a	k	x	k	matrix	A	and	a	k	x	1	vector	c	such	that	g(x)	=	Ax+c.	,	n.	Note	that	a	test	statistic	generates	a	family	of	possible	tests	as	c	varies.	Then	a	randomly	se	lected	individual	from	the	population	can	be	one	of	four	types	AB,	AB,	AB,	AB.	,	Xn	=	Xn,	and	the	conditional	distribution	of	the	zi	's	given	y	t	is	that	of	sample
from	the	population	with	density	l	=	f(x	I	t).	(ii)	Show	that	if	we	model	the	distribotion	of	Y	as	C(min{Xt,	.	(3.4.	14)	Cov	Now	let	us	apply	the	correlation	(Cauchy-Schwarz)	inequality	(A.	An	interesting	discussion	of	a	variety	of	points	of	view	on	these	questions	may	be	found	in	Savage	et	a!.	However,	when	it	can,	then	it	is	easy	to	see	that	E(Y)	=	A	(17	)
Var(	Y	)	=	c(7)	A	(17	)	(6.5.	13)	(6.5.	1	4)	so	that	the	variance	can	be	written	as	the	product	of	a	function	of	the	mean	and	a	general	dispersion	parameter.	This	test	is	called	two-sided	If	we	let	T	because	it	rejects	for	both	large	and	small	values	of	the	statistic	T.	When	F	is	not	symmetric,	/1	may	be	very	much	pulled	in	the	direction	of	the	longer	tail	of
the	density,	and	for	this	reason,	the	median	is	preferred	in	this	case.	(	l	)	Our	own	point	of	view	is	that	subjective	elements	including	the	views	of	subject	matter	experts	arc	an	essential	element	in	all	model	building.	If	J{x,	vo}	is	a	level	a	test	of	H	:	v	=	v0	,	then	the	set	S(x)	of	v0	where	248	Testing	and	Confidence	Regions	o	("''	v0)	�	0	is	a	level	(1	-	o	)
confidence	region	for	fidence	region	for	v.	•	•	=	.	of	oY,	""	rr	""	F;(x)	�	F;	If	Y	generates	Fs	C:)	.	In	this	case	(B.2.4)	g	is	strictly	reduces	to	the	familiar	formula	(A.8.9).	Examples	of	such	measurements	are	hours	of	sleep	when	receiving	a	drug	and	when	receiving	a	placebo,	sales	performance	before	and	after	a	course	in	salesmanship,	mileage	of	cars



with	and	without	a	certain	ingredient	or	adjustment,	and	so	on.	Let	Z	be	the	number	of	red	balls	obtained	in	the	first	two	draws	and	Y	the	total	number	of	red	balls	drawn.	275-277,	3	1	4),	for	instance.	Consider	the	problem	of	testing	H	:	0	=	00	versus	K	:	0	=	O,	with	Oo	<	8,.	.••	i,.	Similarly,	in	Example	1.1.3,	instead	of	postulating	a	constant
treatment	effect	�.	Hilbert	space	theory	is	not	needed,	but	for	those	who	know	this	topic	Appendix	B	points	out	interesting	connections	to	prediction	and	linear	regression	analysis.	l	5)	(A.	Figures	8.2.1	and	8.2.2	show	some	typical	members	of	the	two	families.	The	power	function	of	the	test	with	critical	value	c	i	s	(4.1.2)	because	(z)	=	1	-	(-z	).	:1;1	.
For	example,	if	N	(t)is	the	number	of	disinte	grations	of	a	fixed	amount	of	some	radioactive	substance	in	the	period	from	time	0	to	time	t,	then	{N(t)}	is	a	Poisson	process.	:	Jl	I	•	E	[0,	LJ.]	versus	(a)	Show	that	the	test	that	rejects	H	for	large	values	of	y'n(X	-	LJ.)	has	p-value	p	=	2	treat	ments	on	a	population	and	that	we	administer	only	one	treatment	to
each	subject	and	a	sample	of	nk	subjects	get	treatment	k,	1	<	k	<	p,	n1	+	·	·	·	+	np	=	n.	Others	do	not	and	some	though	theoretically	attractive	cannot	be	implemented	in	a	human	lifetime.	(1962).	Because	this	value	oft	corresponds	to	n	=	�,	the	intuitive	test,	which	decides	JJ	=	v	if	and	0	only	if	T	>	�	[Eo	(T)	+	Ev	(T)J,	is	indeed	minimax.	'	0	3.	I	(a)
We	are	faced	with	a	population	of	N	elements,	for	instance,	a	shipment	of	manufac	tured	items.	This	is	in	fact	true	for	sections	by	any	plane	perpendicular	to	the	y)	plane.	RA.IFFA,	H.,	AND	R.	Let	X1	,	X2,X3	be	independent	observations	from	the	Cauchy	distribution	about	(},	f(x,	9)	=	,.-•	(1	+	(x	-	9)2)	-	1	•	Suppose	X,	=	0,	X,	=	1,	X3	=	a.	In	fact,	it	can
be	shown	using	the	methods	of	254	Testi	n	g	a	n	d	Confidence	Re	g	ions	Cha	pter	4	Chapter	5	that	the	width	of	the	confidence	interval	(	4.4.	1	)	tends	to	zero	in	probability	at	the	�a)	.	357	..-.	The	same	conventions	apply	to	S1	and	K.	Show	that	I	and	•	•	3.	Here	are	two	examples	that	illustrate	these	issues.	k(B,a)	�	k(Bo,	a)	ifB	i	Bo.	k(Oo,	a)	(1	-	a)	Oo.
B	k(8,	a).	Examples	are	the	distribution	of	income	and	the	distri	bution	of	wealth.	Begin	by	noting	that	according	to	e.	=z	is	discrete,	continuous,	(b)	Give	the	conditional	frequency,	density,	or	distribution	function	in	each	case.	Ll	)	Now	a(c)	is	nonincreasing	in	c	and	typically	(c)	T	1	as	c	l	-oo	and	a	(c)	l	0	as	c	T	oo.	Statistical	Models,	Goals,	and	18
Performance	Criteria	Chapter	1	Prediction.	Suppose	that	f(x,	B)	is	a	positive	density	on	the	real	line,	which	is	continuous	in	x	for	each	0	and	such	that	if	(X1,	X2	)	is	a	sample	of	size	2	from	f	(·,	0),	then	X1	+	X2	is	sufficient	for	B.	X11	are	independent	random	variables	with	moment	generating	functions	+	X11	has	moment	generating	function	given	by
llf	x	!ll	x,	,	then	X1	+	.	I	0)	is	the	density	of	i.i.d.	x	and	let	.,-(8)	=	2	exp{-2B},	B	>	0.	(1.4.2)	Let	p(z)	Because	g(z)	is	a	constant,	Lemma	E[(Y	-	g(z)	)	2	I	Z	=	z]	=	=	E(Y	I	Z	=	z).	Then	X	=	probability	By	(A.9.5),	1-	xi	(X1,	.	Stal!·sr.,	43,	1041-1067	(1972).	,	Ynf·	Show	that	)	form	a	sample	from	aN(O,	0,	o-i,	a-�,	p)	population.	Definition	4.3.2.	The	family	of
models	{	P,	:	0	E	8}	with	8	c	R	is	said	to	be	a	monotone	likelihood	ratio	(MLR)	family	if	for	fit	<	02	the	distributions	Po1	and	Po2	are	distinct	and	D	the	ratio	p(:r:,	02	)jp(x,	0	1	)	is	an	increasing	function	ofT(x).	f-lo	·	To	see	this,	note	that	it	follows	from	Example	4.2.	1	that	if	f-1	1	>	f-lo,	the	MP	level	a	test	z	(	1	-	�	o:	)	,	where	T	yn(X	-	f.Lo	)	/a.	Suppose
we	want	to	study	the	effect	of	a	treatment	on	a	population	of	patients	whose	responses	are	quite	variable	because	the	patients	differ	with	respect	to	age,	diet,	and	other	factors	.	OLIVER,	AND	C.	See	Problems	5.3.15	and	5.3.16.	Generalized	linear	models	are	introduced	as	examples.	Implicit	in	this	description	is	the	assumption	that	()	is	a	parameter	in
the	sense	we	have	just	defined.	It	then	offers	a	detailed	treatment	of	maximum	likelihood	estimates	(MLEs)	and	examines	the	theory	of	testing	and	confidence	regions,	including	optimality	theory	for	estimation	and	elementary	robustness	considerations.	That	is,	in	the	216	Testing	and	Confidence	Regions	tenninology	of	Section	1.3,	our	critical	region	C
is	rule	is	ok(X)	=	!{S	>	k)	with	P1	Pu	{X	:	S	>	k}	=	probability	of	type	I	error	=	=	probability	of	type	II	error	=	Chapter	4	and	the	test	function	or	Pe,	(	S	>	k)	Po	(	S	<	k),	B	>	Bo.	The	constant	k	that	determines	the	critical	region	is	called	the	0	critical	value.	Tomographic	data	are	the	result	of	mathematically	based	processing.	Thus,	xfn	.	If	7Jold	is
close	to	the	root	'ij	of	A(ij)	=	t0•	then	by	expanding	A(ij)	around	17oid•	we	obtain	f1new	is	the	solution	for	ij	to	the	approximation	equation	given	by	the	right-	and	left-hand	sides.	If	I	holds	it	is	possible	to	define	an	important	characteristic	of	the	family	{Po},	the	Fisher	information	number,	which	is	denoted	by	I(B)	and	given	by	I(B)	�	E9	(!	logp(X,	B))
2	Note	that	0	<	I(B)	<	oo.	is	3.4.1.	(T	X))	>	information	Cramir-Rao	lower	bound	Var9	(	I(B)	1	(3.4.16)	I(B)	The	number	1/	is	often	referred	to	as	the	for	the	variance	of	an	unbiased	estimate	of	1/J(B).	There	are	absolute	bounds	on	most	quantities-100	ft	high	men	are	impossible.	C.	J.	,	(X.,	Yn))	be	a	sample	from	a	bivariate	normal	population.
distribution,	D(a:),	a	=	(o:1,	,	ar)r,	O'j	>	0,	1	::;	j	<	r,	has	density	•	Let	N	=	(N1,	•	•	•	.	!	Section	3.2	165	Bayes	Procedures	Let	1r	(O)	be	a	prior	distribution	assigning	mass	11'i	to	Oi,	so	that	1ft	>	0,	i	=	0,	.	It	follows	from	the	central	limit	theorem	that	Tn	�	(2::7	1	Xf	-	n	)	/ffn	�	(	V	-	n)j	ffn	has	approximately	a	N(O	1)	distribution.	Volume	I,	which	we
present	in	2	000,	covers	material	we	now	view	as	important	for	all	beginning	graduate	students	in	statistics	and	science	and	engin	eering	graduate	students	whose	research	will	involve	statistics	intrinsically	rather	than	as	an	aid	in	drawing	conclu•	SIOnS.	BICKEL,	P.	Let	X1	,	I	<	a	S	A,	I	<	b	<	B,	1	<	c	<	C	and	La	,b,,Pabo	=	1.	n	x	/[1	Ox(l	-	0)"	(1	-	O)	),
X	=	1,	.	Example	2.4.2.	The	Two-Parameter	Gamma	Family	(continued).	trials	with	the	first	trial	being	a	success.	If	Y	and	Z	are	discrete	random	vectors	possibly	of	different	dimensions,	we	want	to	study	the	conditional	probability	structure	of	Y	given	that	Z	has	taken	on	a	particular	value	z.	G,	where	the	model	{(F,	G)}	is	where	1/J	is	an	unknown
strictly	increasing	differentiable	map	from	R	to	R,	'1/J'	>	0,	'1/J(±oo)	=	±oo,	and	Z1	and	Z{	are	independent	random	variables	.	"	1	139-1158	(1976).	For	the	model	defined	by	(3.2.16)	and	(3.2.17),	find	(a)	the	linear	Bayes	estimate	of	�1(b)	the	linear	Bayes	estimate	of	p..	Note	that	by	the	properties	of	(A.l5.5)	Therefore,	by	(A.l0.8)	g(a)P[Z	>	a]	�
E(g(n)IrpaJ)	<	E(g(Z)),	(A.l5.6)	0	which	is	equivalent	to	(A.l5.4).	i=O	13.	=	a5,	t	>	0.	The	foundation	of	oUr	statistical	knowledge	was	obtained	in	the	lucid,	enthusiastic,	and	stimulating	lectures	of	Joe	Hodges	and	Chuck	Bell,	respectively.	(a)	Show	that	the	MLEs	of	a'f,	ag,	and	p	when	f1,	1	and	J.t2	are	assumed	to	be	known	are	'ifi	=	(1/n)	L:�	1	(X;	-
P.tf.	Define	the	conditional	frequency	function	p(	·	I	z)	ofY	given	Z	=	z	by	p(	)	y	,z	p(y	I	z)	=	P[Y	=	y	I	Z	=	z]	=	p	(z)	z	(B.	A	�	P	diag(>-	1	,	.	Establish	DYi	�	i=	l	where	Y;	�	(Z,,	�	Z,(	ll)llt	2:::	(6;	+	c;lh)Z,(j)	�	i=l	�(	I	)	=	I:j	1	ciziU)	zr/3)2	over	all	{3	is	the	same	as	minimizing	"'	�	Y;	i=l	Differentiate	with	respect	to	{31.	Consider	Examples	3.3.2	and
4.2.1.	You	want	to	buy	one	of	two	systems.	approximately	has	a	x	r	distribution	under	H.	Then	X	is	the	MLE	of	B	and	it	is	trivial	to	calculate	I(B)_	1.	,	Bq	)	,	multinomial	distribu	tion	with	parameters	n,	fh,	.	Show	that	the	MLE	of	ry	is	h	(8)	(i.e.,	MLEs	are	unaffected	by	reparametrization,	they	are	equivariant	under	one-to-one	transformations).	,	r	.	(	and
show	that	(3.6.1)	is	equivalent	to	"Accept	bioequivalence	if	[E(O	I	B)	I	X	=	x)	<	0"	(3.6.	1)	)]2	<	(Tif	(n)	+	c'){log(rg(�;+,'	)	+	x	�	}"	where	Hint:	(b)	large	See	Example	3.2.1.	It	is	proposed	that	the	preceding	prior	is	"uninformative"	if	it	has	("76	---+	TJo	oo").	'	STEIN,	C.,	"Inadmissibility	of	the	Usual	Estimator	for	the	Mean	of	a	Multivariate
Distribution,"	Proc.	However	a	is	not	identifiable	because	qo(x,	a	+	cl)	�	q0(x	,	a)	for	1	=	(	1,	.	STIRZAKER,	Probability	and	Random	Processes	Oxford:	Clarendon	HAJEK,	J.	6)	that	c	(	e)	is	independent	of	e.	Suppose	X	�	N(p1,	E1),	81	=	(p1,	E1),	j	=	0,	1.	Note	that	>.(0)	should	be	negative	when	()	E	(-E,	t:)	and	positive	when	()	¢	(	-E,	t:)	.	2k	is	even,
give	and	plot	the	sensitivity	curve	of	the	median.	in	the	measurement	model,	we	implicitly	discussed	two	estimates	or	decision	rules:	61	(x)	=	sample	mean	X	and	0	(x)	=	2	=	X	=	sample	median.	(b)	Show	that	(X,	Y)	and	(8�,	SJ,	812)	are	independent.	It	emphasizes	nonparametric	methods	which	can	really	only	be	implemented	with	modern	computing
power	on	large	and	complex	data	sets.	2	coincides	with	the	likelihood	ratio	statistic	A	(Y)	for	the	o-2	known	case	with	o-2	replaced	by	0:2.	It	follows	that	Fo	(t)	<	1	-	a	iff	B	>	lia(t)	and	S(t)	=	[lia,	oo).	Topics	to	be	covered	include	per	mutation	and	rank	tests	and	their	basis	in	completeness	and	equivariance.	The	extra	factor	in	the	continuous	case
appears	roughly	as	follows.	Suppose	that	given	(}	�	has	a	beta,	{J(r,	s),	distribution.	}	is	a	conjugate	family	of	prior	distributions	for	p(x	I	8)	and	that	the	posterior	distribution	of(}	given	X	=	x	is	1r	(8	I	x)	=	N'	IT	vW	I	8)	i=l	I	!	74	Statistical	Models,	Goals,	and	Performance	Criteria	where	N'	=	N	+	n	and	({I,	.	We	illustrate	these	ideas	using	the
example	,	Xn	are	i.i.d.	N(f-L,	cr2	)	with	a2	known.	_	>�'	n(9o,n)	�	�	where	:E	is	a	consistent	estimate	of	:E	(Bo),	the	asymptotic	variance	of	Vn	Wn	(	Bo,n)	under	H.	Let	U	�	.	1	I(O)	(5.4.35)	r	•	•	'	332	Asymptotic	Approximations	Chapter	5	Proof	Claims	(5.4.33)	and	(5.4.34)	follow	directly	by	Theorem	5.4.2.	By	(5.4.30)	and	(5.4.35).	1.4.1	assures	us	that
E[(Y	-	p(z))	2	I	Z	=	z]	+	[g(z)	-	p(	z)	]	2	•	(1.4.3)	If	we	now	take	expectations	of	both	sides	and	employ	the	double	expectation	theorem	(B.l	.20),	we	can	conclude	that	Theorem	1.4.1.	/f	Z	is	any	random	vector	and	Y	any	random	variable,	then	either	E(Y	g(Z))2	=	oofor	every	function	g	or	E(Y	-	p(Z)	)2	<	E(Y	-	g(Z)	)	2	(1.4.4)	34	Statistical	Models,	Goals,
and	Performance	Criteria	for	every	g	with	strict	inequality	holding	unless	g(Z)	best	MSPE	predictor.	,	100.	Often	a	treatment	that	is	beneficial	in	small	doses	is	harmful	in	large	doses.	(iii)	are	not	independent.	az,	the	intervals	(4.9.3)	have	correct	asymptotic	probability	of	coverage.	In	Example	1.5.4,	express	t1	as	a	function	of	Lx(O,	I)	and	Lx(l,	1).	An
example	is	discussed	in	Section	4.9.2.	e	(	el	>	e2	)	where	e1	is	the	parameter	of	e	2	is	a	nuisance	parameter.	,	Xn	are	normally	distributed	with	mean	p.	The	Wald	statistic	i	s	only	asymptotically	invariant	under	reparametrization.	This	notion	has	intuitive	appeal,	ruling	out,	for	instance,	estimates	that	ignore	the	data,	such	as	5(X)	=	q(B0),	which	can't
be	beat	for	8	=	80	but	can	obviously	be	arbitrarily	terrible.	Our	multinomial	assumption	now	becomes	N	M(pmid.	Here	is	an	example	of	affine	transformations	of	6	and	T.	(b)	Assume	(1	.7.2)	and	that	Fo(t)	=	P(T	:S	t)	is	known	and	strictly	increasing.	�	Show	that	if	Fx	is	continuous	and	H	holds,	then	D(Fx,	F_x)	has	the	same	distribution	as	D(Fu,	F1-u	)
where	Fu	and	F1-u	are	the	empirical	distributions	of	U	and	1	-	U	with	�	�	�	�	......	Suppose	that	T1	(X)	is	sufficient	for	81	whenever	82	is	fixed	and	known,	whereas	T2(X)	is	sufficient	for	fh	whenever	81	is	fixed	(b)	-	and	known.	p	[	-	-	-	-	-	l	I	•	•	'	I	'	'	I	n	3	3	Fisher	conjectured	that	rather	than	believing	that	such	a	very	extraordinary	event	oc	curred	it
is	more	likely	that	the	numbers	were	made	tO	"agree	with	theory"	by	an	overzeal	ous	assistant.	Science	5,	160-168	(1990).	#	0.	they	depend	only	on	the	nioments	about	the	mean.	Consider	the	parametric	version	of	the	regression	model	of	Example	1.1.4	with	l'(z)	=	g({3,	z),	{3	E	Rd,	where	the	function	g	js	known.	We	make	the	blanket	assumption
that	all	sets	and	functions	considered	are	measurable.	400	Inference	in	the	Multiparameter	Case	Chapter	6	where	D�	is	the	d	x	d	matrix	of	second	partials	of	l11	with	respect	to	e.	,	(c)	Find	the	minimax	rule	among	the	randomized	rules.	(c)	Conclude	that	if	A	and	B	are	independent,	0	<	P(	A)	<	1,	0	<	P(B)	<	1,	then	Z	has	a	limitingN(01	l)	distribution.
=	E(Y	I	Z)	.	One	such	class	is	the	two-parameter	beta	family.	Argue	that	given	are,	T	has	a	Yn	2	distribution.	Independent	classifica	tion	then	means	that	the	events	[being	an	A]	and	[being	a	B]	are	independent	or	in	terms	of	the	eij	·	eij	=	(Bil	+	ei2	)	(B11	+	B21	).	However,	these	and	other	subscripts	and	arguments	will	be	omitted	where	no	confusion
can	arise.	'	Xn	are	observable	and	Xn+	l	is	to	be	predicted.	On	the	other	hand,	P[	[	Nn	(t)	-	N(t)]	>	I]	l)t	j	p	[	(N	(�	-	N	(<	�	)	)	>	l	=	nP	[N	(�)	>	1]	no	(	;)	---t	0	as	n	---t	oo.	rejecting	H	if	N22	N22	9.	o	One	application	of	variance	stabilizing	transformations,	by	their	definition,	is	to	exhibit	monotone	functions	of	parameters	of	interest	for	which	we	can
give	fixed	length	(indepen	dent	of	the	data)	confidence	intervals.	j=l	j=	l	This	is	a	k-parameter	canonical	exponential	family	generated	by	T1,	.	For	a	function	space	example,	consider	v(P)	=	F,	as	in	Example	4.4.6,	where	F	is	the	distribution	function	of	Xi.	Here	an	example	of	N	is	the	class	of	all	continuous	distribution	functions.	(a)	Find	maximum
likelihood	estimates	of	J.t	and	a2	.	j	.	Otherwise,	the	decision	is	wrong	and	the	loss	is	taken	to	equal	one	.	Intuitively,	and	as	we	shall	see	fonnally	later,	a	reasonable	prediction	rule	for	an	unseen	Y	(response	of	a	new	patient)	is	the	function	�-t(z),	the	expected	value	of	Y	given	z.	Unfortunately	�-t(z)	is	unknown.	Also	F(x)	n	-1	E1{X;	<	x}	=	n-
1E1{Fo(X,)	<	Fo(x)}	n-1	E1{U;	<	Fo(x)}	=	U	(Fo(x))	where	U	denotes	the	empirical	distribution	function	of	U1	,	.	In	Example	1.1.2	in	Example	1.1.1,	the	fraction	defective	in	the	sample,	T(x)	a	common	estimate	of	J1.	Example	4.6.2.	Boundsfor	the	Probability	ofEarly	Failure	ofEquipment.	The	approximation	of	the	hypergeometric	distri	bution	by	the
binomial	distribution	indicated	by	this	theorem	is	rather	good.	Suppose	X1	,	.	'	l'	Yet	show	e	and	has	finite	variance.	Actuarial	J.,	204-222	(1	986).	Robustness	from	an	asymptotic	theory	point	of	view	appears	also.	Show	that	this	holds	iff	P[U	�	a	,	V	=	b	I	W	=	c]	=	PIU	=	a	I	W	=	c]P[V	=	b	I	W	=	c].	Press,	1989.	(c)	Let	x	E	{x	:	p(x,	OJ)	>	0},	then	to	have
equality	in	(4.2.4)	we	need	to	have	0}	D	and	0	�	Oo.	It	follows	from	the	Neyman-Pearson	lemma	that	an	MP	test	has	power	at	least	as	large	as	its	level;	that	is,	Corollary	4.2.1.	/f	z(l	-	a)	(4.2.6)	has	probability	of	type	I	error	o:.	Which	lower	bound	is	more	accurate?	Solutions	for	Vol.	Thus,	by	the	definition	of	the	(Student)	t	distribution	in	Section	B	.
Note	for	Section	1.7	(	I	)	uT	Mu	>	0	for	all	p	x	1.9	1	vectors	u	#	0.	Typically,	rather	than	this	Lagrangian	form,	it	is	customary	to	first	fix	a	in	(1.3.8)	and	then	see	what	one	can	do	to	control	(say)	R(P,	v)	E(v(X)	v(P))	+	,	where	x+	xl(x	>	0).	Establish	B.7.9.	10.	Informally,	T(	x)	is	what	we	can	compute	if	we	observe	X	=	x.	Further	applications	appear	in
the	next	D	section.	,	Xrnare	independent	of	each	other	and	Y1,	,	Yn;moreover,X1,	...	Then	use	py,	(y1)	=	f	py,y,	(y,,	Y2	)	dy,.	The	most	famous	unbiased	estimates	are	the	familiar	estimates	of	f.L	and	a-2	when	X1	,	Xn	are	i.i.d.	N(Jl,	a-2)	.	Let	Xh	.	Justify	fonnally	3	E	[h(X	)	-	E(h(X	))J'	=	__!,	[h'(l')	]	311a	+	h"(I'Jih'	(l'	)	]	2u4	+	O(n-3	).	(d)	Suppose	that	(}	has
prior	1r(BI)	0.5,	1r(B2)	�	0.5.	Find	the	Bayes	rule	for	case	�	(a).	E.,	Stochastic	Processes	San	Francisco:	Holden	Day,	1962.	Remark	2.3.1.	In	Example	2.2.8	we	saw	that	in	the	multinomial	case	with	the	clQsed	parameter	set	(.>.;	:	-';	>	0,	2:7�,	-';	=	1},	n	>	k	-	1,	the	MLEs	ofA3	,	j	=	1	,	.	See	Example	5.3.6.	Also	closely	related	but	different	are	so-
called	normalizing	transformations.	,	Xn)	be	a	sample	from	a	Poisson	P	(.A)	distribution	and	let	Sm	=	m	<	n.	,	Yn)	T	by	least	squares	in	a	linear	regression	Y	=	A[3	+	<	and	(8.10.16)	is	the	ANOVA	identity.	Alternatively,	they	may	be	interested	in	total	consumption	of	a	commodity	such	as	coffee,	say	(}	=	N	p,,	where	N	is	the	population	size	and	Jl	is	the
expected	consumption	of	a	randomly	drawn	individual.	Thenthe	map	sending	B	=	(!',G)	into	the	distribution	of	(X1,	,	Xn)	remains	the	same	but	8	=	{	(!'	G)	:	I'	E	R,	Ghas(arbitrary)densityg}.	BLACKWELL,	D.	We	can	also	consider	function	valued	parameters.	D	3.4.1,	Var	(f,	p(X,	B))	I(B).	We	introduce	the	minimax	principle	in	the	contex.	E;=I	ii	.
Moreover,	hv(t)	=	C.ho(t)	is	called	the	Cox	proportional	hazard	model.	Conversely,	if	T	is	sufficient,	let	g(t;	,	B)	=	P8[T	=	t	],	h(x)	=	P[X	x	]	T(	X)	=	t;]	(!.5.6)	p(x,	B)	=	Po[X	=	x,	T	=	T(x)	]	=	g	(T(x),	B)h(x)	(	1.5.	7)	,	=	Then	0	by	(B.	Again	informally	we	shall	call	such	procedures	robust.	The	assertion	(ii)	is	a	consequence	of	the	following	remarks.	Show
that	P(X(k)	<	Xp	<	X(n-1))	=	1	-	.	•	=	E(U),	u;;	-	E(U,	-	M,)'(U2	-	!-'2)i	,	ul	•	-	0.	If	a	IQR.	Thus,	the	number	of	patients	in	the	study	(the	sample	size)	is	random.	21.	However,	two	notions,	the	sensitivity	curve	and	the	break	down	point,	make	sense	for	fixed	n.	t	3)	can	be	used	for	model	construction.	Examples	of	this	process	may	be	found	in	Chapter	5	.
For	instance,	in	comparative	experiments	such	as	those	of	Example	1.1.3	the	group	of	patients	to	whom	drugs	A	and	B	are	to	be	administered	may	be	haphazard	rather	than	a	random	sample	from	the	population	of	sufferers	from	a	disease.	BERMAN,	S.	-	i	i	I	Section	2.3	Maximum	likelihood	in	Multiparameter	Exponential	Families	125	On	the	other
hand,	if	any	TJ	=	0	or	n,	0	<	j	<	k	-	1	we	can	obtain	a	contradiction	to	(2.3.2)	by	taking	c;	=	-1	(i	=	j	)	,	1	<	i	<	k	-	1.	We	call	T	a	test	statistic.	Moreover,	recall	that	a	decision	procedure	in	the	case	of	a	test	is	described	by	a	test	function	/i	:	x	�	{0,	1}	or	critical	region	C	=	{x	:	li(x)	=	1},	the	set	ofpoints	for	which	we	reject.	Hint:	Write	�(	I	I	and	apply
Theorem	6.2.2	to	On	.	Hint:	Consider	T(X)	=	X	in	Theorem	3.4.1.	=	14.	We	discuss	some	of	the	issues	and	the	subtleties	that	arise	in	the	context	of	some	of	our	examples	in	estimation	theory.	Theorem	B.2.2	provides	one	of	the	instances	in	which	frequency	and	density	functions	g	is	one-to-one,	and	Y	g(X)	,	then	py(y	)	=	p,(g-1	(y)	)	.	(i	1	,	.	•	.	0,	1	,
Suppose	Z1	and	Z2	are	independent	with	exponential	£(.A)	distributions.	Suppose	that	X	�	(X1	,	.	On	this	sample	space	we	have	defined	a	random	vector	X	=	(X1,	...	'	'	,	For	instance	l(P,a)	'	-	'	'	��	"	'	-	a	-	v(P)	,	a	>	v(P)	-	c	,	a	<	v(P),	for	some	constant	c	>	0.	We	have	seen	in	the	proof	of	Theorem	4.3.1	that	1	-	Fo(t)	is	increasing	in	0.	If	the
distributionfunction	Fa	ofT(	X)	under	X	,.....,	Pe0	is	continuous	and	ift(l	-a)	is	a	solution	of	Fo	(t)	=	1	-	a,	then	the	test	that	rejects	H	if	and	only	ifT(r)	>	t(I	ex)	is	/JMP	level	a	for	testing	H	:	()	<	Oo	versus	K	:	()	>	Oo.	-	Example	4.3.4.	Testing	Precision.	(i)	Various	notational	conventions	and	abbreviations	are	used	in	the	text.	,	aq	}	let	w13	>	0	be	given
constants,	and	let	the	loss	incurred	when	0;	is	true	and	action	a3	is	taken	be	given	by	=	,	.	Because	the	resulting	value	oft	is	possible	if	0	<	tjo	<	n,	1	<	j	<	k,	and	one	of	the	two	sums	is	nonempty	because	c	i'	0,	we	see	that	(2.3.2)	holds.	Argue	that	the	Fisher	test	is	equivalent	to	+	n	-	(r1	+	ci	)	or	N22	<	q1	+	n	-	(r1	+	c!	)	,	and	that	under	H,	is
conditionally	distributed	1t(r2,	n,	c2).	'	I	.	'	New	York:	J.	•	Section	B.ll	525	Problems	and	Complements	7.	-	-	-1	where	X,,	.	,	n,	and	let	02	=	L:�	1	B[.	Suppose	a	good	fit	is	obtained	by	the	equation	where	Yi	is	observed	yield	for	dose	xi	.	,	Bk)	:	e,	>	0,	1	<	i	<	k,	L�	1	8i	=	1	}.	7,	whereas	if	there	is	no	oil,	formations	0	and	1	occur	with	frequencies	0.6	and
0.4.	We	list	all	possible	decision	rules	in	the	following	table.	(T1	(X)	,	T,(X))	is	sufficient	for	B,	T1	(X)	is	sufficient	for	81	whenever	8z	is	fixed	and	known,	but	Tz(X)	is	not	sufficient	for	8z,	when	(}1	is	fixed	(b)	Exhibit	an	example	in	which	and	known.	Our	one	long	book	has	grown	to	two	volumes,	each	I	I	i	•	to	be	only	a	little	shorter	than	the	first	edition.
We	run	m	+	n	independent	experiments	as	follows:	m	+	n	members	of	the	population	are	picked	at	random	and	m	of	these	are	assigned	to	the	first	method	and	the	remaining	n	are	assigned	to	the	second	method.	,I	'I	,.	I,	this	is	no	longer	the	case	(Problem	4.2.9).	=	Jl	>	0,	corresponding	to	771	=	--jfo	,	ry2	=	-	2!2	family	with	c1	(Jt)	=	¥,	c2	(Jt)	=
Evidently	c(8)	=	{(1)I	,	ry2)	:	ry2	=	-	i	'1f	\)2	,	ry,	>	O	,	ry2	<	0},	which	is	closed	in	E	=	(	(ryl>	ry2)	:	ry1	E	R,	ry2	<	0}.	The	conventions	established	on	footnotes	and	notation	in	the	first	edition	remain,	if	somewhat	augmented.	•	•	Theorem	1.S.l.	Jn	a	regular	model,	a	statistic	T(X)	with	range	T	is	sufficient/ore	if,	and	only	if,	there	exists	afunction	g(t,	B)
defined/or	t	in	T	and	e	in	8	and	a	function	h	defined	on	X	such	that	for	al/	x	p(x,	0)	=	g(T(x),	O)h(x)	E	X,	0	E	8.	=	Y.	Note:	You	may	use	without	proof	(see	Appendix	B.9).	A	review	of	necessary	concepts	and	notation	from	probability	theory	are	given	in	the	appendices.	For	x	>	.3,	plot	the	sensitivity	curves	of	the	mean,	median,	trimmed	mean	with	a	=
Ij4,	and	the	Hodges	Lehmann	estimate.	,	b"g}.	y.	For	a	sample	from	-a	P(B)	distribution,	the	MLE	is	B	Because	X	is	unbiased	and	Var(	X)	=	Bfn,	then	X	is	UMVU.	,	Un	=	I{U	E	(m2	-•,	(m	+	l)T•)},	7.	exists,	and	by	expanding	Y-	c	�	oo	(1.4.1)	for	all	c;	see	Problem	1.4.25.	Let	X	1	,	•	.	653),	compute	{i1	,	{i	,	{i3	and	level	0.95	2	confidence	intervals	for
(31	,	!3	,	(33	.	,	Xn	are	i.i.d.	.	If	=	"\"	�	c,w•	=	k=O	I	(1	-w	)n	,	0	<	w	<	I,	then	Ck	�	I	d'	n	w	)	(I	k!	fiw	k	w=O	Which	of	the	following	families	of	distributions	are	exponential	families?	The	advantage	of	piling	on	assumptions	such	as	(	I)-(4)	of	Exam	ple	1.1.2	is	that,	if	they	are	true,	we	know	how	to	combine	our	measurements	to	estimate	1-L	in	a	highly
efficient	way	and	also	assess	the	accuracy	of	our	estimation	procedure	(Exam	ple	4.4.1).	A	=	{0,	1	}	with	1	corresponding	to	rejection	of	H.	Hint:	(c)	x,	-e?,	x,	-eg	are	independentN(01-B?,	a-2	),	N(	82	-eg,	a-2	),	respectively.	,	Xn)T	where	the	X;	are	i.i.d.	as	X,	then	all	models	for	X	are	exponential	families	because	they	are	submodels	of	the	multinomial
trials	model.	2:7	1	'!'(X,	,	8)	has	a	unique	0	in	S(IJ0,	0	such	that	gn	are	1-1	Chapter	6	on	8(9o,	6)	rithm	starting	at	e;,	converges	to	the	unique	root	(6.2.3).	1	.	(b)	Find	the	minimax	rule	among	{J	1	.	:	ItI	:S	M	}	�	0	a.s.	for	all	M	because	0	is	a.s.	consis	I	!	:	,	'	I	(b)	Expanding,	(5.5.13)	i	1	•	!	'	I	,	Section	5.5	Asymptotic	Behavior	and	Optimality	of	the
Posterior	Distribution	where	Bi,lf	<	)n.	(0,	and	Y	=	t	In	both	of	the	foregoing	examples	considerable	reduction	has	been	achieved.	I	,	R.	Show	your	result	to	the	U[81,	that	fxx(��)	is	minimial	sufficient.	BERGER,	J.	Four	balls	are	drawn	at	random	without	replacement.	Suppose	the	lot	is	sampled	n	times	without	replacement	and	let	Y	be	the	num	ber	of
defectives	found	in	the	sample.	Give	details	of	the	proof	or	Corollary	2.3.1.	5.	Then	:	(b)	Suppose	Xi,	Yi	are	as	above	with	the	same	hypothesis	but	8	=	{	(	81	,	fh)	:	0	<	e,	<	cl)1,01	>	0}.	'	(a)	Compute	the	Rao	test	for	H	Problem	6.4.11.	We	next	tum	to	the	final	topic	of	this	section,	general	criteria	for	selecting	"optimal"	procedures.	02	and	yet	Pe1	=
Pe2•	Such	parametrizations	are	called	unidentifiable.	We	shall	obtain	likelihood	ratio	tests	for	hypotheses	of	the	form	H	:	e1	ew,	which	are	composite	because	e	2	can	vary	freely.	Here	e	=	(!",a)	with	-oo	0.	L,.(x,	-	x)	0}	docs	not	depend	on	B.	(a)	Show	that	for	any	2	x	2	contingency	table	the	table	obtained	by	subtracting	(esti	mated)	expectations	from
each	entry	has	all	rows	and	columns	summing	to	zero,	hence,	is	of	the	form	Z2	where	Z	is	given	by	(6.4.8)	(c)	Derive	the	alternative	form	(6.4.8)	for	Z.	Examples	of	application	such	as	the	Cox	model	in	survival	analysis,	other	transformation	models,	and	the	classical	nonparametric	k	sample	and	independence	problems	will	be	included.	Decision
procedures.	Then,	if	N	=	(N1	1	,	N12	,	N21	,	N22)	r	,	we	have	N	M	(n,	Ou	,	8	12	,	82	1	,	022)	.	Duality	Theorem.	1	.3)	�	0	has	80	as	its	unique	solution	for	all	80	E	8.	(a)	Suppose	that	a	statistic	T(X)	has	the	property	that	for	any	prior	distribution	on	the	posterior	distribution	of	9	depends	on	x	only	through	T(x).	(c)	Give	an	approximate	expression	for	the
critical	value	if	n	is	large	and	8	not	too	close	to	0	or	oo.	,	n,	,	(3.5.1)	.	X1	,	.	AND	J.	Suppose	that	X1	,	•	.	11)	with	scale	parameter	5.	The	power	is	plotted	as	a	function	of	8,	k	�	6	and	the	size	is	0.0473.	Note	that	because	l	can	be	any	of	the	integers	1	,	.	-	�	-	,	The	interplay	between	estimated	variance	and	computation	As	we	have	seen	in	special	cases
in	Examples	3.4.3	and	3.4.4,	estimates	of	parameters	based	on	samples	of	size	n	have	standard	deviations	of	order	n	-	1	12	.	These	will	not	be	dealt	with	in	our	work.	,	Xn	be	independently	distributed	with	Xi	having	a	N(	ei,	1)	distribution,	1	<	i	<	n.	If	A	=	1,	the	joint	density	of	X1	and	X2	is	(B.2.I2)	for	x1	>	0,	X2	>	0.	l	l	3.00	2.91	2.85	2.75	2.62	0.025
6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.37	3.18	0.01	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.30	4.01	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.54	2.40	0.025	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.06	2.86	0.01	8.68	6.36	5.42	4.89	4.56	432	4.14	4.00	3.80	3.52	0.025	O.oJ	0.05	Ofl5	0.05	4	5	6	0.025	O.Q	I	0.05	7	0.025	0.01	0.05	8	0.025	0.01	0.05	9
0.025	0.01	0.05	10	0.025	O.Di	0.05	0.05	12	15	r1	=	numerator	degrees	of	freedom.	j	"'->	.	JEFFREYS,	H.,	Theory	ofProbability,	2nd	ed.	We	begin	this	discussion	with	decision	theory	in	Section	1.3	and	continue	with	optimality	principles	in	Chapters	3	and	4.	For	instance,	do	smoking	and	lung	cancer	have	any	relation	to	each	other?	Appendix	D.	•	=	-	B
•	whole	class	of	distributions,	which	admits	simple	sufficient	statistics	and	to	which	this	0	example	belongs,	are	introduced	in	the	next	section.	l	l	.IO))	can	be	written	as	')'1	=	c3Jci	and	/'2	=	c4jc�.	,	Xn	is	a	sample	from	a	N(p,,u2)	population,	where	11	is	a	known	standard,	and	we	are	interested	in	the	precision	s)	for	s	using	4.	CHUNG,	K.	1.3)	and	g	�
{G	:	J	xdG(x)	�	0}.	I	6	.	j.	Show	that	if	P	is	a	(discrete)	canonical	exponential	family	generated	b(,	(T,	h)	and	&0	#	0,	then	T	is	minimal	sufficient.	I,	3rd	ed.	P(X	2	v)	2	iJ.	It	is	easy	to	see	that	the	likelihood	ratio	test	for	testing	H	:	g	<	80	versus	K	:	8	>	00	is	of	the	form	�	n	"Reject	if	L	log[p(X,}n)/p(Xi,	eo)]l	(en	>	eo)	>	kn(eo,	a)."	i=l	It	may	be	shown
(Problem	5.4.8)	that,	for	a	<	�.	In	Example	3.4.8,	we	found	that	in	the	class	of	unbiased	estimators,	X	is	the	optimal	estimator.	In	general,	checking	sufficiency	directly	is	difficult	because	we	need	to	compute	the	conditional	distribution.	Hint:	Consider	(]"�0	=	.	This	density	corresponds	to	the	distribution	known	as	noncentral	x2	dom	and
noncentrality	parameter	fP	.	New	York:	1973.	Implicit	in	this	calculation	is	the	assumption	that	Po1	[T	>	c0]	is	an	increasing	function	ofn.	A•(B)	S	(t)	Proof.	To	deal	with	such	situations	we	need	an	extension	of	Theorem	3.3.2.	Theorem	3.3.3.	Let	o'	be	a	rule	such	that	sup8	R(O,o')	=	r	<	oo,	let	{tr.}	denote	a	sequence	of	pn'or	distributions	such	that
7rk{8	:	R(B,	0*)	=	r}	=	I.	[!,-	(X),	!'+(X)]	is	a	level	(	1	-	a)	confidence	interval	for	I'	·	general,	if	v	=	v(P),	P	E	P,	is	a	parameter,	and	X	�	P,	X	E	Rq,	We	say	that	In	'	It.	it	be	possible	for	a	bound	or	interval	to	achieve	exactly	probability	it	may	not	(1	-	a)	for	a	prescribed	(	1	-	a)	such	as	.95.	l0.4)	i=l	where	eieT	can	be	interpreted	as	projection	on	the	one-
dimensional	space	spanned	by	ei	(Problem	B	.	Such	families	are	called	conjugal.'?.	For	instance,	consider	situation	(d)	listed	at	the	beginning	of	this	section.	If	{Po	:	0	E	8},	8	C	R,	is	an	MLR	family	in	T(x),	then	L(x,	Oo,	01)	=	h(T(x))	for	some	increasing	function	h.	3o5ol	I	•	Computation	Speed	of	computation	and	numerical	stability	issues	have	been
discussed	briefly	in	Sec	tion	2.4.	They	are	dealt	with	extensively	·in	books	on	numerical	analysis	such	as	Dahlquist,	Section	3.5	189	Nondecision	Theoretic	Criteria	BjOrk,	and	Anderson	(	1974).	Therefore,	Because	s2	function	of	I	Tn	I	(n	-	1	)	where	1	-	(a5	/	a2	)	=	1	+	(	x	-	Mo	)	2	/	0'	2	.	Example	1.1.2.	Sample	from	a	Population.	�	Show	that	the
maximum	contrast	estimate	B	is	consistent.	'	..	P.,	''Sampling	and	Bayes	Inference	in	Scientific	Modelling	and	Robustness	(with	Discus	sion),"	J.	For	instance,	in	estimating	B	E	R	when	X	N(B,	a5).	One-Samp	le	Models.	A	newly	discovered	skull	has	cranial	measurements	(X,	Y)	known	to	be	distributed	either	(as	in	population	0)	according	to	N(O,	0,	1,	1	,
0.6)	or	(as	in	population	1)	according	to	N(l,	I,	I,	I,	0.6)	where	all	parameters	are	known.	Justify	formula	(2.4.8).	Show	that	under	the	assumptions	of	Theorem	B.3.3,	Z	and	(Z1	-	Z,	.	In	this	case	(5.3.19)	is	an	ordinary	differential	equation.	'	�	:	also	been	argued	that,	generally	in	science,	announcing	that	a	new	phenomenon	has	been	I	observed	when	in
fact	nothing	has	happened	(the	so-called	null	hypothesis)	is	more	serious	•	!	•	than	missing	something	new-	that	has	in	fact	occurred.	Example	1.3.1.	Ranking.	20.	6.4.3	Logistic	Regression	for	B	i	nary	Responses	In	Section	6	.	"	:i	13.	13	461	Some	Classical	Discrete	and	Continuous	Distributions	distributions,	which	arise	frequently	in	probability	and
statistics,	and	list	some	of	their	Following	the	name	of	each	distribution	we	give	a	shorthand	notation	that	properties.	In	order	to	avoid	this	ambiguity	it	is	convenient	to	define	the	confidence	coefficient	to	be	the	largest	possible	confidence	level.	The	exponential	convergence	rate	(8.9.5)	for	the	sum	of	indepen	dent	Bernoulli	variables	extends	to	the
sum	Sn	=	2:�	1	Xi	of	i.i.d.	bounded	variables	Xi,	[X;	-	I'	I	<	c;,	where	I'	=	E(Xt)	-	n	P[ISn	-	nJl[	>	x)	<	2exp	-	i	x'/	l:::Cl	(8.9.6)	i=	I	For	a	proof,	see	Grimmett	and	Stirzaker	(1	992,	p.	1	1	6	7.84	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.!0	7	9.04	12.02	14.07	1	6.01	16.62	18.48	20.28	22.04	24.32	26.02	8	10.22	13.36	15.51	17.53	18.17	20.09	21
.95	23.77	26.12	27.87	9	1	1	.39	14.68	16.92	19.02	19.68	2	1	.67	23.59	25.46	27.88	29.67	10	12.55	15.99	18.31	20.48	21.16	II	23.21	25.19	27.1	1	29.59	31	.42	13.70	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31	.26	33.14	12	14.85	18.55	21	.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82	13	15.98	19.81	22.36	24.74	25.47	27.69	29.82	31	.88	34.53
36.48	14	17.12	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.	=	Bo	versus	K	(}	>	Bo.	Then	0_*	is	uniformly	most	accurate	at	:	Proof	Let	0	be	a	competing	level	(	I	-	a	)	LCB	Oo.	Defined	o	(x,	00)	by	o(x,	00)	�	0	if,	and	only	if,	O(x)	<	00.	Suppose	the	possible	states	of	nature	are	(}1,	(}2,	the	possible	actions	are	a1,	a2,	a3,	and	the	loss	function	l((},
a)	is	given	by	a,	a,	o	2	I	0	2	I	Let	X	be	a	random	variable	with	frequency	function	p(x,	(})	given	by	I	(1	-	p)	(I	-	q)	and	let	d1	,	when	.	Express	the	band	in	terms	of	critical	values	for	An(F)	and	the	order	statistics.	1:	Tests	for	Heteroscedasticity,	Nonlinearity,"	Ann.	Although	there	are	several	good	books	available	for	this	purpose,	we	feel	that	none	has
quite	the	mix	of	coverage	and	depth	desirable	at	this	level.	,	Xn	distributed	according	to	Po.	B	E	(a,	b),	a	<	eo	<	b,	derive	an	optimality	property,	and	then	directly	and	through	problems	exhibit	other	tests	with	the	same	behavior.	•	�-"	•	545	Tables	Appendix	C	(x'	>	x)	Table	III	dJ	X	x2	distribution	critical	values	.25	.10	.05	.025	Right	tail	probability	p
.02	.0	I	.005	.0025	.001	.0005	I	1.32	2.71	3.84	5.02	5.41	6.63	7.88	9.14	!0.83	12.12	2	2.	(3)	We	can	assess	the	effectiveness	of	the	methods	we	propose.	of	moments	estimate	from	Example	2.1	.2,	.A(O)	=	�.	�	(x,	y)	in	(A.8.	l	l	)	and	(A.8.	12)	should	be	transposed.	=	3.	Volume	I:	Statistical	Models,	Goals,	and	Performance	Criteria.	If	time	is	measured	in
discrete	periods,	a	model	that	is	often	used	for	the	time	X	to	failure	of	an	item	is	P,	[x	�	k]	�	Bk	-1(1	-	B),	k	�	1,	2,	.	Berlin:	Springer,	1	977.	"Stochastic	Complexity	(With	Discussions),"	J.	Suppose	that	X1	,	.	and	Cauchy	distributions.	(c)	Using	the	fact	that	if(N"	.	�---	------	II	'	Section	1.	which	can	be	thought	of	as	the	difference	in	the	means	of	the	two
populations	of	responses.	Vw,o:	is	called	the	Cramer-von	Mises	statistic.	Wiley	&	Sons,	1995.	•	C(max{X1	,	(i)	Show	that	if	we	model	the	distribution	of	Y	as	.>..F	e	o	(y)	•	1	•	•	.	Thus,	Theorem	8.10.	The	total	number	of	defective	items	observed,	T	=	2::�_.1	into	the	is	a	statistic	that	maps	many	different	values	of	same	number.	measurable.	The	Rao
statistic	is	also	invariant	under	reparametrization	and,	thus,	approximately	x;_	q	·	Moreover,	we	obtain	the	Rao	statistic	for	the	composite	multinomial	hypothesis	by	replacing	Boj	in	(6.4.2)	by	ei	(ij)	.	The	proof	is	straightforward:	Po,	[Vn1(8o)(Bn	-	Bo)	>	z]	�	l	-	1>(z)	by	(5.4.40).	As	we	have	seen	this	parametriza	tion	is	unidentifiable	and	neither	f1	nor
�	arc	parameters	in	the	sense	we've	defined.	HAMPEL,	P.	Now	the	conditional	distribution	of	Y	given	Z	=	z	is	the	same	as	the	distribution	of	Y	if	P�	is	the	probability	measure	on	(0,	A).	Fortunately,	a	simple	necessary	and	sufficient	criterion	for	a	statis	tic	to	be	sufficient	is	available.	London:	Oxford	University	Press,	1948.	128	Methods	of	Estimation
(	l	)	If	l	x�ld	-	x	1	<	2	0,	x�ld	=	xnew.	i.e.	iff	U	and	V	are	independent	given	W.	15.8)	_	where	Sn	a	standard	normal	distribution.	A3:	,P(	·	9)	is	differentiable,	�	(X1,	9)	has	a	finite	expectation	and	i	!	A2:	'	,	a.p	'!	I·	�	Ep	89	(X,	9(P))	f	0.	In	the	heterogenous	regression	Example	1.6.10	with	n	>	3,	0	<	z1	<	that	the	MLE	exists	and	is	unique.	If	[	is	the
column	space	of	a	matrix	Anxp	ofrankp	<	n,	then	(8.	(a)	Show	that	S	in	Example	2.4.5	has	the	specified	mixture	of	Gaussian	distribution.	PARZEN,	PARZEN,	E.,	Modern	Probability	Theory	and	Its	Application	New	York	:	J.	301),	specifies	that	where	TJ	is	an	unknown	number	between	0	and	1.	I'	X	y	254	2,71	240	2,96	279	2,62	284	2.	The	Neyman
Pearson	framework	is	still	valuable	in	these	situations	by	at	least	making	us	think	of	possible	alternatives	and	then,	as	we	shall	see	in	Sections	4.2	and	4.3,	suggesting	what	test	statistics	it	is	best	to	use.	Find	the	MLE	B	of	B.	>	0	and	Et	=	Eo,	then,	if	ito•	Llo,	Eo	are	known,	a	UMP	(for	all	)..	That	is,	we	want	to	find	that	the	interval	'	a	such	that	the
probability	[X	-	a,	X	+	a]	contains	p.	,	2,	<	Xn	.	We	call	C	the	set	of	compatible	points.	Hint:	Because	C'	is	of	rank	r,	xC'	=	0	=>	x	=	0	for	any	r-vector	x.	Let	Bm,n	have	a	beta	distribution	with	parameters	m	and	n,	which	are	integers.	22,	The	Views	of	Fisher	and	Neyman,	and	Later	Developments,"	Testing	Statistical	Hypotheses,	2nd	ed.	D(B,B	o	)	=	Es,	(
p(X	,	,	O	)	-	p(X,	,Ilo	))	328	Asymptotic	Approximations	Chapter	5	•	;	•	•	is	uniquely	minimized	at	Bo.	Let	On	be	the	minimum	contrast	estimate	-	0.	'	n	=	P	(	-	2::.	,	wild	�values.	Does	a	new	car	seat	design	improve	safety?	Wiley	&	Sons,	1960.	We	want	a	uniformly	most	accurate	level	{1	-	a)	upper	confidence	bound	q*	for	q(	A)	=	1	-	e->.to,	the
probability	of	early	failure	of	a	piece	of	equipment.	The	basic	bias	variance	decomposition	of	mean	square	error	is	presented.	,	Xn+k)	be	a	sample	from	a	population	with	density	f(x	I	8),	e	E	e.	Under	what	conditions	on	(x11	,	Xn)	does	the	MlE	exist?	Asymptotic	analogues	0	�	•	•	I	i	•	0	of	these	inequalities	are	sharp	and	lead	to	the	notion	and
construction	of	efficient	estimates.	,	J:n),	c(b,	t)	=	[�;"'	,	F"J-',	b	>	1.	I	We	would	like	to	acknowledge	our	indebtedness	to	colleagues,	students,	and	friends	i	,	who	helped	us	during	the	various	stages	(notes,	preliminary	edition,	final	draft)	through	'	which	this	book	passed.	This	is	the	same	as	the	probability	0	limit	of	the	frequentist	interval	(	4.8.	1	)	.
An	additional	"dispersion"	parameter	can	be	introduced	in	some	exponential	family	models	by	making	the	function	h	in	(6.	Use	a	construction	similar	to	that	of	Problem	B.4.1	0	to	obtain	a	pair	of	random	variables	(X,	Y)	that	(i)	have	marginal	normal	distributions.	,	Yn	.	We	use	the	word	event	here	for	lack	of	a	better	one	because	these	,	'	'	l	j	'	�	•	'	'
Section	A.l6	473	Poisson	Process	are	not	events	in	tenns	of	the	probability	model	on	which	the	N	(	t)	are	defined.	Let	the	distribution	of	smvival	times	of	patients	receiving	a	standard	treatment	be	the	known	distribution	Fo,	and	let	Y1,	.	Now	the	parametrization	is	unidentifiable	because,	for	example,	11-	=	0	and	N(O,	1)	errors	lead	to	the	same
distribution	ofthe	observations	a�	11-	=	1	and	N(	1,	1)	errors.	In	this	case	we	define	the	inner	product	by	.	,	Br)T,	0	<	8;	<	1,	L	B;	=	1.	,	XN	)	)	then	,	,	y	>	0,	A	>	0.	Then	we	expect	D(8o,	8)	-----Jo	v8	D(80,	8)	=	o	(2.	Suppose	Hint:	Use	(5.3.12).	We	shall	analyze	B	ayesian	credible	regions	further	i	n	Chapter	Summary.	L.,	"A	Theory	of	Some	Multiple
Decision	Problems,	1-25,	547-572	(1957).	Often	the	following	final	assumption	is	made:	(4)	The	distribution	F	of	(l)	is	N(O,	cr2	)	with	cr2	unknown.	Show	that	if	p	=	r	=	2	in	Example	6.1.2,	then	the	hat	matrix	H	=	C	h	a	pter	6	(	hij)	is	given	by	1	+	(zi2	Z.2)	(zj2	-	Z.2)	-__:___-"----:--=__:_	__;;_	n	-=----=	2.:(zi2	-	z.2)	2	1	1.	,	k}}.	(b)	Nabeya-Miura	Alternative.
!06	3.497	4.025	4.437	12	0.695	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318	13	0.694	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221	14	0.692	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140	15	0.691	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073	16	0.690	1	.337	1	.	,	X�)	could	be	taken	with	out	gross	errors	then
P*	E	P*	would	be	an	adequate	approximation	to	the	distribution	of	X*	(i.e.,	we	could	suppose	X*	......,	P*	E	P"').	Then	(see	Table	1	.6.1)	�(B)	�	Bja2	and	I	and	II	are	satisfied.	,	Xn	)	=	(	L	X,	LX,")	i=	1	i=l	.	,	en	are	dependent	as	are	the	X's.	The	statistic	of	rank	k	-	1	which	generates	the	family	is	T(k-	1)	=	(T1	,	.	W.	Its	densities	are	given	by	x"-1(1	-	x)'-1	•
•	It	follows	by	integration	by	parts	that,	for	all	p	>	0,	r(p	+	1)	=	pr(p)	and	that	r(k)	=	(k	-	1)!	for	positive	integers	k.	Formal	definitions	require	model	specification,	specification	of	the	gross	error	mechanism,	and	definitions	of	insensitivity	to	gross	errors.	Hint:	n	n	n	1	1	-n	L	'l'(X,,	8�)	n-	L	'l'(X,,	80)	-	n-	L	D¢(X,,IJ�)	+	ap(l)	(1J�	1J0).	YI	),	.	,	Proof.	AND
A.	Example	4.1.4.	One-Sided	Tests	for	the	Mean	ofa	Normal	Distribution	with	Known	Vari	ance.	,	Zd.	Here	ll(Y	I	L)	=	E(Y)	This	is	just	(1.4.14).	then	II	,	II	is	a	norm,	That	is.	What	is	needed	are	simple	sufficient	conditions	on	p(x,	B)	for	II	to	hold.	However,	as	we	shall	see	later,the	first	parametrization	we	arrive	at	is	not	necessarily	the	one	leading	to	the
simplest	analysis.	,	xN	for	the	unknown	current	family	incomes	and	correspondingly	u1,	.	But	c(9)	is	closed	so	that	71°	=	c(8°)	and	8°	must	satisfy	the	likelihood	equations.	I	.4,	it	has	power	against	parameter	values	on	either	side	of	/1-0·	Because	the	same	interval	(4.5	.	f6";'	L(x,	0,	00)d1r(O)	f_':x,	L(x,	0,	Oo)d1r(O)	.	The	work	of	Rao,	Linear	Statistical
Inference	and	Its	Applications,	2nd	ed.,	covers	most	of	the	material	we	do	and	much	more	but	at	a	more	abstract	level	employing	measure	theory.	•	,	'1/Jd)T	(2.	R.,	linear	Statistical	Inference	and	Its	Applications,	2nd	ed.	I	!	'	I	-	Most	measurement	and	recording	processes	are	subject	to	gross	errors,	anomalous	val	ues	that	arise	because	of	human	error
(often	in	recording)	or	instrument	malfunction.	A	143,	383-430	(1979).	}	q(s,	Bnew	)	r(X	I	s,	Bnew	)	log	log	I	S(X)	=	s	.	One	way	of	doing	this	is	to	align	the	known	and	unknown	regions	and	compute	statistics	based	on	the	number	of	matches.	Evidently	Y	could	itself	range	over	an	arbitrary	space	Y	and	then	R	would	be	replaced	by	Y	in	the	definition	of
a(·).	This	implies	that	ifF	is	the	distribution	of	a	control,	then	G(·)	F(·-	�).We	call	this	the	shift	model	with	parameter	6..	(3)	Condition	A7	is	essentially	equivalent	to	(5.2.8),	which	coupled	with	(5.2.9)	and	-	identifiability	guarantees	consistency	of	B	in	a	regular	model.	Show	that	the	density	of	V	=	L:�	1	Xl	is	given	by	=	Pv	(v)	=	L	P(R	=	i)f2i+n(v),	v	>	0
i=O	where	R	P	(�fP)	and	frn	is	the	x:n	density.	-	·	-	(a)	Show	that	X,	X,	X	arc	translation	equivariant	and	antisymmetric.	and	Hall,	1986.	-2	�	�	---	(	l)	.	'	'	0	!	I	'	'	i	!	I	l	'	I	'	Section	4.	'	'	'	'	'	532	Additional	Topics	in	Probability	and	Analysis	Appendix	B	16.	We	are	given	a	random	experiment	with	sample	space	f!.	A	proof	due	to	Wu	(1983)	is	(2.4.21)
Example	2.4.4	(continued).	,	p,	or	=	=	Thu	s,	Theorem	2	.	As	we	shall	see	shortly	for	X	and	in	Unbiased	estimates	play	a	particularly	important	role	in	survey	sampling.	Suppose	that	each	Xi	has	the	Pareto	density	1	+BI	-(	f(x,O)	=	c8Bx	,	x>c	where	8	>	1	and	c	>	0.	'	•	!'	'	'	I	I	'	i'	g(x1	-	B)g(xz	-	B)	g(x	+	t,	-	B)g(x	-	t,	-	B).	With	this	definition	it	is	477	478
Additional	Topics	in	Probability	and	Analysis	y	TABL	E	R	!	z	0	I	2	pz(z)	Appendix	B	I	0	10	0.25	0.05	0.05	0.	9	97	References	D.	In	this	i.i.d.	Bernoulli	case,	set	s	then	p(x,	0)	=	0	(	1	-	0)"-'	=	(I	-	0)"[0/(1	-	0)]"	'	'	'	'	and	the	model	is	by	(4.2.1)	MLR	in	s.	Later	we	were	both	very	much	influenced	by	Erich	Lehmann	whose	ideas	are	strongly	rellected	in	this
hook.	ISBN	0-13-850363-X(v.	(1	-	a,)	LCB	and	q(X)	is	a	level	(1	-	a,)	UCB	for	q(8),	(1	-	(a,	+	a,)	)	confidence	interval	for	q(8).	In	the	case	of	a	normal	sample	of	size	n	+	1	with	only	n	variables	observable,	we	construct	the	Student	t	prediction	interval	for	the	unobservable	variable.	The	corollary	follows	from	(8.2.4),	(8.2.5),	and	the	relation,	'	'	•	'	..	Let	8	A
=	{a0,	.	•	•	.	Similarly,	when	f-t	<	�-to.	Of	even	greater	concern	is	the	possibility	that	the	parametriza	tion	is	not	one-to-one,that	is,	such	that	we	can	have	01	f.	Therefore,	01	k(B1,	a)	>	k(B2	,	a)	would	imply	that	Po,	[S	2:	k(B2	,a)	]	>	Po,	[S	>	k(B2	,	a)	-	1]	2:	Po,	[S	>	k(B1	,a)	-	1]	>	a,	a	contradiction.	Let	1.4	p	1.2	....	,	b	where	Nij	is	the	number	of
individuals	of	type	i	for	characteristic	1	and	j	for	characteristic	2.	Its	properties	are	similar	to	those	of	the	trimmed	mean.	Normalizing	Transformation	for	the	Poisson	Distribution.	(c)	Is	the	assumption	that	the	�	's	are	normal	needed	in	(a)	and	(b)?	ofStatist.,	2,	1	1-22	(1975).	,	Zn	-	Z).	(iii)	and	(iv)	The	chance	of	any	occurrence	in	a	given	time	period
goes	to	0	as	the	pe	riod	shrinks	and	having	only	one	occurrence	becomes	far	more	likely	than	multiple	occurrences.	Fisher's	Method	ofScoring	The	following	algorithm	for	solving	likelihood	equations	was	proosed	by	Fisher-see	Rao	(1973),	for	example.	tx	for	a	function	1	g	of	a	real	variable	that	possesses	g(xn)	and	g(x	-0)	for	limx.	Let	V	and	W	be
independent	and	have	x�	and	x?n	distributions,	respectively,	and	let	S	=	(Vjk	)	(Wjm).	1	3	)	as	N	-	oo	for	k	=	0,	1,	.	We	want	to	predict	the	value	of	a	confidence	interval	for	the	best	MSPE	predictor	E(Y)	=	(b)	Find	a	level	(1	a)	prediction	interval	for	Y	(i.e.,	statistics	t(Y1	,	.	To	prove	(i)	note	that	it	was	shown	in	Theorem	4.3.1	(i)	that	Pe	[S	>	j]	is
nondecreasing	02	and	in	6	for	fixed	j.	from	the	start,	include	examples	that	are	important	in	applications,	such	as	regression	experiments.	,	XN	))	,	then	P(Y	<	y)	=	e-.XFo(Y)	e	,	-	_	1	1	,	y	>	0,	A	>	0.	It	is	possible	to	give	useful	generalizations	of	Theorem	not	one-to-one	(Problem	B.2.2	to	situations	where	g	is	B.2.7).	are	as	in	Example	other	Uj	with
probability	1r1	where	size,	then	and	Uj	is	retained	independently	of	all	3.4.1	Lf	1	1rj	=	n.	BRowN,	L.,	Fundamentals	of	Statistical	Exponential	Families	with	Applications	in	Statistical	Deci	sion	Theory,	IMS	Lecture	Notes-Monograph	Series,	Hayward,	1986.	Sequencing	is	done	by	applying	computational	algorithms	to	raw	gel	electrophoresis	data.	In	a
sample	of	n	independent	plants,	write	x;	=	j	if	the	ith	plant	has	genotype	j,	1	<	j	5	6.	Other	choices	that	are,	as	we	shall	see	(Section	5.1),	less	computationally	convenient	but	perhaps	more	realistically	penalize	large	errors	less	are	Absolute	Value	Loss:	l(P;	a)	=	f	v	(	P)	-	a[	,	and	truncated	quadratic	loss:	l(P,	a)	=	min	{(v(	P)-a)2,	d'}.	Xn.	where	xi	X1	1	of
the	distribution	of	Xi.	•	•	•	1	.-v	Find	N	(�to	,	�)'	j.lo	is	a-	2	is	(called)	the	precision	(a)	Show	that	p(x	I	B)	()(	o:	n	exp	(-	itB)	where	t	=	��	l	(X,	-	l"o)	2	and	()(	denotes	"proportional	to"	as	a	function	of	B.	•	=	-	I	in	Example	2.1.5	show	that	no	maximum	likelihood	estimate	of	8	=	(Jl,	0'2	)	�	�	15,	Suppose	that	T(X)	is	sufficient	for	8	and	that	8(X)	is	an
MLE	of	8.	Then	5	is	identifiable	whenever	flx	and	flY	exist.	then	by	Problem	B.3.4,	U;	�	U(O,	1).	•	,	.	(c)	Let	Yi	denote	the	response	of	the	ith	organism	in	a	sample	and	let	ZiJ	denote	the	level	of	the	jth	covariate	(stimulus)	for	the	ith	organism,	i	=	11	•	•	•	,	n;	j	=	1,	.	7.2)	is	equivalent	to	Sy	(t	I	z)	=	Sf':	(t).	Last	and	most	important	we	would	like	to	thank
our	wives,	Nancy	Kramer	Bickel	and	Joan	H.	Here	the	data	function	n}	where	Yi	,	.	)	be	the	set	of	possible	realizations	of	X	and	let	ti	=	T(xi)·	Then	T	is	discrete	and	2:::"'	1	Po[T	=	I;]	=	1	for	every	8.	are	21.	i	j	l	'	Section	1.7	Problems	87	and	Complements	Hint:	Apply	the	factorization	theorem.	Corollary	4.5.1.	Under	the	conditions	of	Theorem	4.4.1,	{t	:
a(t,B)	>	a)	=	(-oo,	to(1	-	a)]	{B	:	a(t,B)	>	a)	=	[�(t),	oo).	The	family	FL	,S	=	{Fp,,a	:	-oo	<	J.t	<	oo	,	a	>	0}	is	called	a	location-scale	parameter	generality	take	E(Y)	family,	J1	is	called	a	location	parameter,	and	a	a	scale	parameter,	and	Y	is	said	to	generate	FL	,S·	From	Fp,,a(x)	=	(	x	-	fl.)	F	a	=	)	(	r(x	-	!")	F...,	,r	+	'Y	,	a	we	see	as	before	how	to	refer
calculations	involving	one	member	of	the	family	back	to	any	other.	We	give	a	contain	any	further	information	about	()	or	equivalently	decision	theory	interpretation	that	follows.	,	"�	)	.	-	1/	>.o	=	12.	We	can	then	formally	write	an	analysis	of	deviance	analo	gous	to	the	analysis	of	variance	of	Section	6.1.	If	w0	c	w1	we	can	write	(6.5.6)	a	decomposition
of	the	deviance	between	Y	and	j1,0	as	the	sum	of	two	nonnegative	com	ponents,	the	deviance	of	Y	to	j1,	1	and	�	(j1,0	,	j1,	1	)	=	D	(Y,	j1,0)	-	D(Y,	j1,1	)	,	each	of	which	can	be	thought	of	as	a	squared	distance	between	their	arguments.	,	sv.	1	i=l	=	i=-.1	t=1	(b)	Show	that	under	AO-A4	there	exists	c	>	0	such	that	with	probability	tending	to	1,	;.	The
moments	do	not	exist	for	r	2:	k,	the	odd	moments	are	zero	when	r	<	k.	Check	AO,	.	If	we	require	that	h	is	increasing,	this	leads	to	h(1l	(A)	=	Vc/J>..,	A	>	0,	which	has	as	its	solution	h(>.)	=	2,JC,\	+	d,	where	d	is	arbitrary.	S.	Suppose	that	in	the	Gaussian	model	of	Ex	ample	4.3.4.	p,	is	unknown.	•	Problems	and	Complements	Section	5.6	�	.	The	most
common	choice	of	g	is	the	linear	form	g(/31	z)	=	zT/3.	Then,	for	ail	n,	(A.	The	remaining	case	T,	=	0	gives	a	contradiction	if	c	=	(1,	1,	.	33	I	,	386	P(.\),	Poisson	distribution	with	parame	of	sample	correlation,	3	1	9	tribution,	492	ter	,\,	462	U	(a,	b),	uniform	distribution	on	the	inter	val	(a,	b)	,	465	of	estimate,	300	of	minimum	contrast	estimate,	327	of
posterior,	339,	391	asymptotic	order	in	probability	notation,	516	asymptotic	relative	efficiency,	357	autoregressive	model,	l	l	,	292	acceptance,	215	action	space,	1	7	Bayes	credible	bound,	25	I	adaptation,	388	Bayes	credible	interval,	252	algorithm,	l	02,	I	27	Bayes	credible	region,	251	bisection,	127,	2	1	0	coordinate	ascent,	129	asympbtic,	344	Bayes
estirn•te,	162	EM,	l33	Bernoulli	trials,	166	Newton-Raphson,	102,	132,	189,210	equivan.ance,	168	for	GLM,	4	1	3	proportional	fitting,	157	alternative,	215,	2	1	7	Gaussim	model,	163	linear,	I	>	1/>.o.	It	is	easy	to	see	that	there	is	typically	no	rule	c5	that	improves	all	others.	l4),	we	get	the	formula	2	2	Var	X	=	E(X	)	-	[E(X)j	The	covariance	is	defined
whenever	X1	and	X2	have	finite	variances	and	in	that	case	''	I'	(A.	This	statistic	takes	values	in	the	set	of	all	distribution	functions	on	R.	The	prototypical	example	of	a	Hilbert	space	is	Euclidean	space	RP	from	which	the	ln	thiscase	ifx	=	(xi	,	·	·	-	,	xp)T,	y	=	(Yb	·	·	·	dlvf	E	RP,	(x,y)	=	abstraction	is	drawn.	Here	is	an	example	in	which	the	mean	is	extreme
and	the	median	is	not.	Thus,	.C{	Xn+	l	I	X	=	t}	=	.c{	(Xn+	I	-	9	)	+	9	I	X	=	t}	=	N(	/iB	,	0"5	+	a1	)	where,	from	Example	4.7.1,	0"	�2	B	=	n	a5	1	I	+	72	'	J1	B	�	=	(	0"	B2	I	7	2	)	TJO	+	(	n	O"	B2	I	0"02	)	X-	·	a)	Bayesian	prediction	interval	for	Y	is	[Y3	,	YtJ	with	It	follows	that	a	level	(1	-	Yf	=	liB	±	z	(	1	-	�	a)	V(J5	+	a1	.	As	in	the	first	edition	problems	play
a	critical	role	by	elucidating	and	often	substantially	expanding	the	text.	�------	--	I	'	I	•	I	'	'	'	I	'	-	P,	[e•	(X)	<	B']	<	Po	[B(X)	<	8'].	;	.	Let	S(X)	=	{v0	E	N	:	X	E	A(vo)).	A	common	(but	often	violated	assumption)	is	(1)	The	ti	are	identically	distributed	with	distribution	F.	Specifically,	sup	pose	that	{XN}	is	a	sequence	of	random	variables	such	that	'H.	-
PITMAN,	J.,	Probability	New	York:	Springer,	1	993.	To	complete	the	proof	notice	that	if	1j(rJc)	is	any	subsequence	of	1j(r)	that	converges	to	ry•	(say)	then,	by	(I),	l(ry•)	=	A.	Moreover,	the	random	interval	[v(	X),	v(	X)]	formed	by	a	pair	of	statistics	v(X),	v(X)	is	a	level	(	I	-	a	)	or	a	100(1	-	a)	%	confidence	interval	for	v	if,	for	all	P	E	P,	P[v(X)	<	v	<	v(X)]	>	I
-	a.	If	each	time	you	test,	you	want	the	number	of	seconds	of	response	sufficient	to	ensure	that	both	probabilities	of	error	are	<	0.05,	which	system	is	cheaper	on	the	basis	of	a	year's	operation?	sup{p	(x	,	B	)	:	e	where	�	()	=	�2	(x,	a	)	=	E	8}	=	p	(	x	,	B)	,	(1-n	�	n1	�	-	2	)	LJ	xi	,	i	=l	-	LJ	(xi	i=l	x)	,	is	the	maximum	likelihood	estimate	o	f	e.	We	use	the
notation	of	We	can	initialize	with	the	method	Example	2.3.2.	For	n	>	2	we	know	the	MLE	exists.	Suppose,	9n	(X1	,	.	Consider	the	hypothesis	H	that	the	mean	life	1/	>.	Then	(A.	For	instance,	in	(l.l.2)	suppose	that	we	permit	Gto	bearbitrary.	3.8	REFERENCES	ANDREWS,	D.	But	(B.!	0.1	1)	for	ali	a	is	equivalentto(B.!O.IO).	The	probability	distribution	of
X	is	given	by	.	I	P[!OOII	>	20]	!	=	"'	p	!0011	-	1	0	JIOO(O.I)	(o.9)	I	-	C35)	=	Cha	pter	1	(A	1	5	.	l	1	.21).	Semi	parametric	estimation	and	testing	will	be	considered	more	generally,	greatly	extending	the	material	in	Chapter	8	of	the	first	edition.	We	assume	n	2	k	-	1	and	verify	using	Theorem	2.3.1	that	in	this	caseMLEs	of	'I;	=	log(>.;/>.•),	1	<	j	<	k	-	1,
where	O	<	>.;	=	P(X	=	j]	<	1,	exist	iff	all	T;	>	0.	(b)	Give	explicitly	the	E-	and	M-steps	of	the	EM	algorithm	in	this	case.	,	Xn)T	can	be	written	as	the	rank	2	canonical	(a)	Show	that	the	density	of	X	=	(X1	,	exponential	family	generated	by	T	=	(E	log	X,,	EX,)	and	h(x)	=	x	-	1	with	ry1	=	p,	'll	=	-	>.	,	(Un,	n	n	'"'	822	�	n	'"'	n	·	;;;;	while	�	812	X	�	y	n.	1	1)	1,
then	A(17)	jc(7)	=	log	/	exp{c-	1	(7)17TY}	h(y,	7)dy.	Show	that	SC(x	iTn	)	�	(2a)-	1	(x2	-	)	do	not	converge.	37.	It	will	present	important	statistical	concepts,	methods,	and	tools	not	covered	in	Volume	I.	Show	that	Theorem	B.7.5	implies	Theorem	B.7.4.	.	In	situations	such	as	this	one	we	shall	simplify	notation	and	write	H	:	(}	=	00,	K	:	B	>	Bo.	If	we	allow
for	the	possibility	that	the	new	drug	is	less	effective	than	the	old,	then	eo	=	[0,	Bo]	and	80	is	composite.	for	A.	Similarly,	any	solution	B.(T)	of	Fo(T)	=	a	with	Ba	E	6	is	an	upper	confidence	bound	for	8	with	coefficient	(	1	-	a).	We	want	to	estimate	B	and	VaroX1	=	B(1	-	B).	Using	this	information,	he	wants	to	predict	the	first-year	grade	point	averages	of
entering	freshmen	on	the	basis	of	their	College	Board	scores.	(a)	normal,	()	=	(p,	a2)	(b)	gamma,	r(p,	e	=	>.,	p	fixed	>.),	(c)	binomial	(d)	Poisson	(e)	negative	binomial	(see	Problem	1.6.3)	()	=	(p,	(0	gamma,	r(p,	>.),	.	•	,	Chapter	1	Xn	be	a	sample	from	a	population	with	density	fo	(x)	a(O)	h	(x)	if	O	I	<	x	<	o,	0	othetwise	where	h(x)	>	0,	0	=	(OI	,	O,	)	with
-oo	0	on	X.	A	hybrid	of	the	two	methods	that	always	converges	and	shares	the	increased	speed	of	the	Newton-Raphson	method	is	given	in	Problem	2.4.	7.	Specifically,	(i)	The	posterior	distribution	is	discrete	or	continuous	according	as	the	prior	distri	I	!	bution	is	discrete	or	continuous.	be	i.i.d.	X	valued	and	for	the	moment	take	X	=	R.	A	random
experiment	has	been	perfonned.	If	8	is	not	bounded,	minimax	rules	are	often	not	Bayes	rules	but	instead	can	be	obtained	as	limits	of	Bayes	rules.	(2)	Suppose	that	if	treatment	A	had	been	administered	to	a	subject	response	x	would	have	been	obtained.	Thus	a	distribution	G	has	the	same	shape	as	F	G	E	F.	where	the	Yi	are	the	indicators	of	a	set	of	n
Bernoulli	trials	with	success	probability	p.	For	instance,	we	can	invert	the	family	of	size	o:	We	can	also	invert	families	of	likelihood	ratio	tests	to	obtain	what	we	shall	call	likelihood	ratio	tests	of	the	point	hypothesis	H	:	e	=	e0	and	obtain	the	level	(1	-	o:	)	confidence	region	C	(x	)	where	sup0	=	denotes	sup	over	e	ro0	n	{	e	:	p	(	x	,	e)	�	[c	(	e)	t	E	1	sup0	p
(x,	e)	}	(4.9.2)	8	and	the	critical	constant	c	(	e)	satisfies	[sup0	p	(X,	e)	p	(X	'	e0	)	�	c	(eo	)]	=	o:	.	'.	(4)	Show	how	the	ideas	and	results	apply	in	a	variety	of	important	subfields	such	as	Gaussian	linear	models,	multinomial	models,	and	nonparametric	models.	We	want	to	test	whether	F	is	exponential,	F(x)	�	1	-	exp(	-x),	x	>	0,	or	Weibull,	F(	x	)	�	1	-	exp(	-
x	9),	x	>	0,	B	>	0.	Let	X1,	,	Xn1	,	Y1	,	-	.	enough	steps	J	so	that	Ill	On	the	other	hand,	at	least	if	started	close	enough	to	8,	the	Newton-Raphson	method	in	1	(j	-	1)	j	fJ	(T(X)	-	A(BU	�'))	)	takes	on	the	order	which	the	jth	iterate,	fl(	)	=	iP-	)	A-1	(	of	log	log	!	steps	(Problem	3.5.2).	(b)	Find	E(Ye1Z+(1/Z)I	1	Z	=	z)	.	This	leads	to	P[IOOII	2	20	I	X	=	10]	"'	0.30.
Suppose,	for	instance,	we	are	interested	in	the	proportion	(}	of	"geniuses"	(IQ	2:	160)	in	a	particular	city.	a�	In	the	bivariate	case	write	=	aoz·	Show	that	1J.	(A.I3.4)	,	Xk	are	independent	random	variables	distributed	as	B(n1,	8),	0),	respectively,	then	X,	+	X2	+	·	·	·	+	X,	has	a	l3(n1	+	-	·	·	+	.	,	n,	where	the	€i	are	independent	normal	random	variables
with	mean	0	and	known	variance	u2	(cf.	1.28)	for	the	noncentrality	parameter	B2	in	the	regression	example.	This	is	the	most	general	form	of	the	minimum	contrast	estimate	we	shall	consider	in	the	next	section.	A	prototypical	example	follows.	,	b"9	for	the	preceding	case	(a).	Section	1.	�	Let	en	(a,	()0)	denote	the	critical	value	of	the	test	using	the
MLE	On	based	on	n	observations.	On	the	other	hand,	consider	the	Gaussian	linear	model	of	Example	2.1.1.	Then	least	squares	estimates	are	given	in	closed	fonn	by	equ(\tion	(2.2.10).	Now	suppose	8	is	Euclidean	c	Rd,	the	true	80	is	an	interior	point	of	8,	and	8	D(Bo,	8)	is	smooth.	Let	J1-	5	E	(X1	)	denote	the	mean	difference	=	:	between	the	response	of
the	treated	and	control	subjects	.	The	conditional	frequency	function	p	is	defined	only	for	values	of	z	such	that	pz(z)	>	0	.	A	consumer	organization	preparing	(say)	a	report	on	air	condi	tioners	tests	samples	of	several	brands.	Next	use	Problem	B.3.	1	1	and	""'	roo	Pv	(v)	=	n	J0	00	L	P(R	=	i)j,i+l	(v	-	s)	fn-l	(s)ds.	ft	-	8	f	>	;	i=l	(5.5.14)	y'ne-"'	IPn	-	P	I	>	W-
(	0	for	some	A	<	oo.	Let	any	T(X)	be	Var0(T(X))	<	oo	for	all	B.allDenote	E0(T(X))	by	1/;(0).	7)	j	'	.,	I	•	'	'	'	Section	8.10	521	Topics	in	Matrix	Theory	and	Elementary	Hilbert	Space	Theory	because	y	=	A	-•x	maximizes	the	quadratic	form.	Kretch,	and	R.	Unfortunately	�	=j=.	Show	that	if	S0	is	continuous,	then	X'	=	-	log	S0	(X)	and	Y'	=	-	log	S0(Y)	follow	an
exponential	scale	model	(see	Problem	1	.	The	mathematical	model	suggested	by	the	descrip	tion	is	well	defined.	This	is	evidently	a	linear	space	that	can	be	shown	to	be	closed.	The	parameter	>..	(a)	Show	that	the	correlation	of	X1	and	Y1	is	3.	•	i=l	(A.l2.6)	This	follows	by	induction	from	the	definition	and	(A.	If	�0	=	(1,	0,	.	--	This	is	the	usual
Pythagoras's	Theorem.	,	Un	ordered,	then	.	Here	we	can	write	the	n	determinations	of	p,	as	•	•	•	.	Suppose	AI:	The	parameter	O(P)	given	by	the	solution	of	j	,P(x,	O)dP(x)	'·	0	(5.4.21)	is	well	defined	on	P.	Problems	for	Section	3.3	l	.	However.	A	stockholder	wants	to	predict	the	value	of	his	holdings	at	some	time	in	the	fu	ture	on	the	basis	of	his	past
experience	with	the	market	and	his	portfolio.	It	may	be	shown	(see	Volume	ll)	that	the	(approximate)	tests	based	on	Z	and	Fisher's	test	are	asymptotically	equivalent	in	the	sense	of	(5.4.54).	(zt,	Yi).	Models	are	approximations	to	the	mechanisms	generating	the	observations.	10)	for	{3	is	easy	to	write	down	symbolically	but	not	easy	to	evaluate	if	d	is	at
all	large	because	inversion	of	+	1)/2	terms	with	Z'£ZD	requires	on	the	order	of	nd2	operations	to	evaluate	each	of	n	operations	to	get	Z'J;ZD	and	then,	if	implemented	as	usual,	order	d3	operations	to	invert.	event	occurs	in	a	Poisson	process	with	parameter	1/28'	(see	A.16).	It	can	be	shown	(under	suitable	conditions)	that	the	nonnal	approximation	to
the	distri	bution	of	h(	X)	improves	as	the	coefficient	of	skewness	'YI	n	of	h(X)	diminishes.	Index.	,	l3(nk,	nk,e)	distribution.	n	("n	---..	(a)	1	)	(	Y))	O(n	=	E(h(X	,	h	J1.1,	Jt)2	+	-	).	Condition	on	V	and	apply	the	double	expectation	theorem.	As	our	examples	suggest,	there	is	tremendous	variation	in	the	degree	of	knowledge	and	control	we	have	concerning
experiments.	'	•	•	The	numerator	is	an	increasing	function	of	1.	,	'	I	'	'	'	'	I'I	'	'	Section	2.5	Problems	and	Complements	6.	,	R(Bk,	8))	and	if	k	=	2	we	can	plot	the	set	of	all	such	points	obtained	by	varying	8.	Measure	theory	will	not	be	used.	1	'	Here	!'(X)	is	called	an	upper	level	(l	-	a)	confidence	bound	for	I'·	Finally,	in	many	situations	where	we	want	an
indication	of	the	accuracy	of	an	estimator,	we	want	both	lower	and	upper	bounds.	Reading,	MA:	Addison-Wesley,	1974.	M.,	AND	A.	In	this	case	a2	=	A	and	Var(X)	=	Ajn.	Use	Problem	1.5.12.	Let	X	�	(1/n)	2::�	1	X,	,	Y	�	(1/n)	2::�	1	Y;	,	Sf	�	2::�	1	(X,	-	X)	,	2	2	"	"	""	S2	�	L..i�1	(Y;	-	Y)	•	S12	�	L..i�1	(X,	-	X)(Y;	-	Y).	<	eo]}	+	2E[(c	-	Y)l[c	<	Y	a,	8	>	0,
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Assistant:	Joanne	Wendelken	Art	Director:	Jayne	Conte	Cover	Design:	Jayne	Conte	I'n'nlict·	llall	i	@2001,	1977	by	Prentice-Hall,	Inc.	Show	that	?T(m	1	as	n	--+	oo	whatever	be	a.	I	4.9)	upon	writing	A.16.4	Let	T1	N(t)	�	N,	(t)	+	(N(t)	-	N,	(t)).	(c)	Show	that	if	a�	>	of	coverage	<	•	'	I	'I	!	'	'	'I	'	'	1	-	a,	a/	and	>.	(B.LJ	1)	This	P�	is	just	the	conditional
probability	measure	on	(0,	A)	mentioned	in	(A.4.2).	7	Problems	and	Complements	This	is	known	as	the	Pareto	density.	H.,	Optimal	Statistical	Decisions	New	York:	McGraw-Hill,	1969.	By	convention,	if	drug	A	is	a	standard	or	placebo,	we	refer	to	the	x's	as	control	observations.	,	Oko)	under	H,	but	under	K	may	be	either	multinomial	with	8	#	Bo	or	have
Eo(Ni	)	nBio,	but	Varo	(N;)	<	nOiO(l	-	0;0)("Cooked	data").	Form	of	the	Two-Sided	Tests	Let	B	=	(Jl-,	a2	),	8o	{	(Jl-,	a2	)	:	J1-	=	fl-o}.	An	exhaustive	census	is	impossible	so	the	study	is	based	on	measurements	and	a	sample	of	n	individuals	drawn	at	random	from	the	popu	lation.	and	can	conclude	that	the	statistic	of	(	6.5.	10	)	is	asymptotically	x�	under
H.	r2	=	denominator	degrees	of	freedom.	In	Example	4.1.3	with	o(X)	�	1{S	>	k),	Bo	�	0.3	and	n	=	10,	we	find	from	binomial	tables	the	level	0.05	critical	value	6	and	the	test	has	size	a(6)	�	Pe,	(S	>	6)	�	0.0473.	The	Neyman	Pearson	Framework	The	Neyman	Pearson	approach	rests	on	the	idea	that,	of	the	two	errors,	one	can	be	thought	of	as	more
important.	They	initially	tabulated	Nm1	,	Nft.	As	a	consequence	of	Theorems	2.3.2	and	2.3.3,	we	can	conclude	that	an	MLE	/.i	always	exists	and	satisfies	(2.3.	7)	if	n	2	2.	1.4	we	discussed	situations	in	which	we	want	t	o	predict	the	value	o	f	a	random	In	addition	to	point	prediction	of	that	contains	the	unknown	value	Y	Y,	it	is	desirable	to	give	an	interval
with	prescribed	probability	(1	-	a	.	Here	are	some	further	examples	of	the	kind	of	situation	that	prompts	our	study	in	this	section.	:.	fJ	(1	-	a)	r	=	2.	xTy	=	L�=I	XjYi·	ll	xll	2	=	:L�=l	x]	is	the	squared	length,	and	so	on.	If,still	in	this	example,	we	know	(	1/)	1	!	n�	we	are	measuring	a	positive	quantity	in	this	model,	we	have	8	=	R+	x	R+.	The	sample
space	consists	of	the	numbers	0,	1,	.	-oo	•	'	'	•	•	l1	I	j'	'	l	'	--	Section	B.ll	527	Problems	and	Complements	(a)	Show	that	T	=	(sv	n+l	,	.	To	get	infonnation	we	take	a	sample	of	n	individuals	from	the	city.	Problems	for	Section	6.4	1.	The	"if'	part	of	(a)	is	deeper	and	follows	from	the	spectral	theorem.	Suppose	that	lj1,	'	=	1	,	.	In	addition,	the	set	includes	a
large	number	of	problems	with	more	difficult	ones	appearing	with	hints	and	partial	solutions	for	the	instructor.	Suppose	that	we	only	record	the	time	of	failure,	if	failure	occurs	on	or	before	time	r	and	otherwise	just	note	that	the	item	has	lived	at	least	(r	+	1)	periods.	Hint:	()	---+	g;�	(X,	8)	is	continuous	and	�	sup	E,g;!(X,O)	-!(B)	and	{	:;;	(X,B')	•	JO	-
B'J	<	�.	Discuss	the	preceding	decision	rule	for	this	"prior."	(c)	Discuss	the	behavior	of	the	preceding	decision	rule	for	large	sider	the	general	case	(a)	and	the	specific	case	(b).	Here,	in	pseudocode,	is	the	bisection	algorithm	to	find	x•.	The	projection	formulation	now	reveals	that	what	we	obtained	in	Section	mulas	for	projection	operators	in	two
situations,	1.4	are	for	(a)	[	is	the	linear	span	of	1,	Zt,	.	Our	model	is	then	specified	by	the	joint	distribution	of	the	observed	number	X	of	defectives	in	the	sample	and	the	random	variable	9.	Because	fti	>	0,	J.Li	is	sometimes	modeled	as	J.Li	=	cxp{Or	+	fhzi},	i	=	1,	.	3.4,	D(X,	fl)	has	asymptotically	a	x%-r·	distribution	for	11	E	w	as	mi	--+	oo,	i	1,	.	c}.	In
general,	let	a(	t,	v0)	denote	the	p-value	of	a	test	b	(T,	vo	)	=	1	[T	>	c]	of	H	:	v	=	vo	based	on	a	statistic	T	=	T(	X	)	with	observed	value	t	=	T(x).	Here	a	is	small,	usually	.05	or	.01	or	less.	iteration	of	the	Newton-Raphson	algo	On	described	in	(b)	and	that	O	satisfies	n	Hint:	You	may	use	the	fact	that	if	the	initial	value	of	Newton-Raphson	is	close	enough	to
a	unique	solution.	8	8	If	we	let	k	sup8	R(B,	&•).	=	(M,	a2),	P	2.	jF(xp)	[l	-	F(xp)]	=	p.	(a)	The	beta	family.	That	is,	sections	of	the	surface	z	=	px_	(x,	y)	by	planes	parallel	to	the	(y,	z	)	plane	are	proportional	c,	Px	to	Gaussian	(normal)	densities.	The	problem	of	deciding	whether	B	=	80,	8	<	80,	or	B	>	Bo	is	an	example	of	a	three	decision	problem	and	is	a
special	case	of	the	decision	problems	in	Section	1.4,	and	3.1-3.3.	Here	we	consider	the	simple	solution	suggested	by	the	level	(	1	-	a)	confidence	interval	!:	:	1.	However,	'	for	the	purpose	of	referring	to	the	duality	between	testing	and	confidence	procedures,	we	H	test	:	J1-	=	fl-o	,	where	we	think	of	as	an	established	standard	for	an	old	treatment.	The
Dirichlet	distribution	is	a	conjugate	prior	for	the	multinomial.	Let	8,	P,	and	p	be	as	in	Problem	6.2.1	densities	of	the	form	=	{N({L,	a2)	:	1-L	E	R,	a2	>	0},	p	(	x,	8)	and	let	Q	be	the	class	of	distributions	with	(	1	-	E	)	0	and,	hence,	p	is	strictly	convex.	The	following	data	are	the	blood	cholesterol	levels	(x's)	and	weight/height	ratios	(y's)	of	I	0	men	involved
in	a	heart	study.	Show	that	if	H	is	simple	and	the	test	statistic	T	has	a	0.	1	linear	subhypotheses	are	important.	Hint:	Po,[X	�	x	I	S(X)	�	s]	�	13.	)	n�	1	Xt	and	I:�	1	log	Xi	,	Xi	>	0	(c)	I:�	1	xi	and	I:�	1	log	Xi,	Xi	>	0	(d)	(l:�	1	xi	,	l:�	1	x;)	and	(l:�	1	xi,	I:�	1	(xi	-	x?)	(e)	(I:�	1	Xi,	2:�	1	xl)	and	(2:�	1	Xi	,	2:�	1	(xi	X	)	3).	276	Testing	and	Confidence
Regions	Chapter	4	(iii)	Consider	the	model	G(y,	efiFo	(Y)	_	1	0)	e•	-	1	j	,	O	f'	O	Fo(Y),	o	�	o.	Many	interesting	examples	are	discussed	in	the	books	of	Feller	(	1968),	Parzen	(1	962),	Kar	lin	(1	969).	In	terms	of	our	preceding	discussion.	,	ii	}	appears	at	[E(X,,	.	Distribution-Free,	Unbiased	and	Equivariant	Procedures.	The	most	trivial	example	of	a
sufficient	statistic	is	T(X)	=	X	because	by	any	interpretation	the	conditional	distribution	of	X	given	T(X)	=	X	is	point	mass	at	X.	,	X	is	p(x,,	.	A(8)	=	2	2	88J	e)	I	(1	+	E7=/	e	l	Thus,	by	Theorem	3.4.3,	the	lower	bound	on	the	variance	of	an	unbiased	estimator	of	l/1;	(8)	=	E(n-1	T;(X))	=	>.;	is	>.;(1	-	A;	)fn.	The	comments	contain	digressions,	reservations,
and	additional	references.	Note	that	there	are	many	ways	ofchoosing	a	parametrization	in	these	and	all	other	problems.	Identify	,.,,	B,	T,	and	h.	Show	that	if	C	is	an	n	x	r	matrix	of	rank	r,	r	:=:;	n,	then	the	r	x	r	matrix	C'C	is	of	rank	r	and,	hence,	nonsingular.	In	this	case	Monte	Carlo	studies	have	shown	that	the	test	in	Section	4.9.4	based	on	Welch's
approximation	works	well.	,	X�)	is	a	good	estimate.	,	En	are	uncorrelated	with	mean	0	and	variance	a2	•	Give	the	least	squares	estimating	equations	(2.1.7)	for	estimating	a,	{3,	5,	and	J.t.	.	Appendices.	However,	the	interpretations	are	different:	In	the	frequentist	confidence	interval,	the	probability	of	coverage	is	computed	with	the	data	X	random	and
B	fi	xed,	X	is	computed	with	4.8	whereas	in	the	Bayesian	credible	interval,	the	probability	of	coverage	=	x	fixed	and	(}	random	with	probability	distribution	II	(	B	I	X	=	x)	.	and	the	data	are	x�	where	d	is	one	of	2,	10,	or	50.	We	begin	this	in	the	simple	examples	that	follow	and	continue	in	Sections	1.2-1.5	and	throughout	the	book.	,	Wnf	�	1)	orthogonal
matrix	whose	first	row	is	C(V,,	.	A	proof	of	the	Cauchy-Schwartz	inequality	is	given	in	Remark	1.4.	1.	Other	transforms,	such	as	the	p	robit	9	I	(	1r	)	=	-	1	(1r)	where	is	the	N(O,	1	)	d.f.	and	the	log-log	transform	92	(1r)	=	log	[-	log	(	1	-	1r)]	are	also	used	in	practice.	(a)	If	X	1	,	.	It	is	natural	to	ask	what	happens	if,	in	fact,	the	MLE	1j	doesn't	exist;	that	is,
t0	¢_	C¥.	Show	that,	although	N	is	random,	../N(X	-	p)/so,	with	X	=	I:f	1	X	0	when	0"2	is	known.	Argue	as	in	Prol;>lem	4.9.4.	'''	'	'	'	(d)	Relate	the	two-sided	test	of	part	(c)	to	the	confidence	intervals	for	a5faf	obtained	in	Problem	4.4.10.	Using	I	and	II	we	obtain,	.,P'	(B)	j	T(x):Bp(x,B)dx	=	j	T(x)	(:B	logp(x,B))p(x,B)dx.	•	j-	1	1	if	L	nk	+	1	<	i	�'n	(9o,n)E	--...
See	Theorem	5.3.3.	A.18	REFERENCES	BERGER,	J.	Show	that	under	A2.	Statistical	Models,	Goals,	and	Performance	Criteria	8	1	.	In	the	Gaussian	linear	model	show	that	the	parametrization	({3,	a2	)	T	is	identifiable	if	and	only	if	r	=	p.	1	where	(Xi	I	B)	N(	e	,	0"	)	,	0"	known,	and	1r(B)	is	N	(	TJo	,	7	2	)	,	7	2	known	.	That	is,	the	standardized	versions	of
verge	in	law	to	a	standard	normal	random	variable.	(1.3.7)	Confidence	Bounds	and	Intervals	Decision	theory	enables	us	to	think	clearly	about	an	important	hybrid	of	testing	and	estimation,	confidence	bounds	and	intervals	(and	more	generally	regions).	,	Xn	is	a	sample	with	xi	,.....,	p(x	I	0),	a	regular	model	and	integrable	as	a	function	of	e.	announce	as
your	level	{1	(b)	Suppose	that	Ef	2,	a	�	0.01.	For	other	r,	E(Xr)	does	not	exist.	1	,	the	acceptance	versus	K	:	B	>	Bo	can	be	written	region	of	the	UMP	size	a	test	of	H	:	B	=	Bo	A(Bo)	=	{x	:	T(x)	<	to0(1	-	a)	}	where	to0	(1	-	a	)	is	the	1	-	a	quantile	of	Fo0•	By	the	duality	theorem,	if	s(t)	=	{8	E	6	:	t	<	to(l	-	a	)	}	,	then	S(T)	is	a	we	find	1	-	a	confidence	region
for	B.	We	usually	take	P	to	be	parametrized,	P	=	{Pe	:	0	E	8}	.	Ahmed	and	N.	Suppose	l":�	/	x;	=	0.	I	Note	that	in	this	example	the	power	at	()	=	81	>	0.3	is	the	probability	that	the	level	0.05	test	will	detect	an	improvement	of	the	recovery	rate	from	0.3	to	fh	>	0.3.	When	81	is	0.5,	a	67%	improvement,	this	probability	is	only	.3770.	Also	note	that	P(X	>
t)	=	S0	(t).	(a)	Show	that	(1.	,	Xn	)	is	an	£	(	>.	is	defined	whenever	XI	and	X2	are	not	constant	and	the	variances	of	X1	and	X2	are	finite	by	'	I	(A	.	An	.	The	power	is	a	function	of	8	on	e	1	If	Go	is	composite	as	well,	then	the	probability	of	type	I	error	is	also	a	function	of	B.	be	(l)	The	x's	andy's	are	realizations	of	X1,	,	Xm	a	sample	fromF,	and	Yt,	...	By
Corollary	4.3	.	,...__	=	.	The	packages	that	produce	least	squares	estimates	do	not	in	fact	use	formula	(2.1.	10).	538)	one	can	improve	on	318	Asymptotic	Approximations	Chapter	5	the	normal	approximation	by	utilizing	the	third	and	fourth	moments.	Chapter	2	of	this	edition	parallels	Chapter	3	of	the	first	artd	deals	with	estimation.	,	r,	where	9i	is
chosen	so	that	H	becomes	equivalent	to	"(B�	,	.	WEO	'	I	I	I	i	Section	2.5	145	Problems	and	Complements	Now	show	that	WMLE	�	w	�	q(O).	Formally,	we	can	define	(}	:	P	-----+	8	as	the	inverse	of	the	map	8	-----+	Po,	from	8	to	its	range	P	iff	the	latter	map	is	1-l,	that	is,	if	Po1	=	Pe2	implies	81	=	82.	To	this	we	have	added	the	normality	assumption.	The
Bayesian	formulation	is	based	on	the	posterior	predictive	distribution	which	is	the	conditional	distribution	of	the	unobservable	variable	given	the	observable	variables.	of	the	sample)	is	a	level	(e)	Let	S	denote	a	B(n,p)	variable	and	choose	k	and	l	such	that	I	-	a	=	P(k	<	S	<	n	-	l	+	I)	=	2:7	k+	1	pi(!	-p)"-i.	a	meaning	to	Data-based	model	selection	can
make	it	difficult	to	ascenain	or	even	assign	the	accuracy	of	estimates	or	the	probability	of	reaching	correct	conclusions.	For	instance,	if	a2	)	population	with	a2	known,	there	is	no	UMP	test	=	f-lo	vs	K	:	f-1	=f.	In	the	context	of	the	foregoing	examples,	we	could	leave	the	component	in,	replace	it.	Suppose	we	want	0	<	p	<	1.	However,	insofar	as	possible
we	prefer	to	take	the	frequentist	point	of	view	in	validating	statistical	statements	and	avoid	making	final	claims	in	terms	of	subjective	posterior	probabilities	(see	later).	If	Mx	is	well	defined	in	a	neighborhood	{	s	:	lsi	<	so}	of	zero,	all	moments	of	X	finite	and	=	E(Xk)	k	s	,	lsi	<	so	.	We	solve	(3(0,)	=	f3	for	n	and	find	the	approximate	solution	fh	Oo	a	=
.05,	f3	=	.90,	Oo	=	0.3,	and	01	=	0.35,	we	11eed	n	=	(0.05)-2	{1.645	0.3(0.7)	+	1.282	0.35(0.55)}	2	=	162.4.	For	instance,	if	X	X	Thus,	the	size	.05	binomial	test	of	H	:	8	=	0.3	requires	approximately	163	observations	to	have	probability	.90	of	detecting	the	17%	increase	in	e	from	0.3	to	0.35.	Here	are	the	elements	of	the	Neyman	Pearson	story.	Show
that	Un	�·	0,	Un	�	0,	but	Un	+	0,	p	>	I,	where	L	is	defined	in	Problem	B.	Hint:	Show	that	if	the	convex	support	of	the	conditional	distribution	of	Y1	given	Z1	=	zUl	contains	an	open	interval	about	P,j	for	j	=	1,	.	random	variables.	,	l)r.	Because	the	class	of	tests	with	level	a	for	H	:	()	<	()0	is	contained	in	the	class	of	tests	with	level	a	for	H	:	()	=	00,	and
because	dt	maximizes	the	0	power	over	this	larger	class,	bt	is	UMP	for	H	:	()	<	Oo	versus	K	:	()	>	Oa.	The	following	useful	result	follows	immediately.	:	a	test,	{31	+	{hz;,	z;	not	all	which	rejects,	if	and	only	if,	l	l'	434	Inference	in	the	Multiparameter	Case	Chapter	6	12.	,	with	probability	�	)	and	given	the	treatment,	while	the	second	patient	serves	as
control	and	receives	a	placebo	.	,	Xn	be	distributed	as	where	x1,	�	.	It	is	-1	or	1	in	the	case	of	perfect	relationship	(Xz	=	a	l-	bX1	,	b	<	0	orb	>	0,	respectively).	We	could	then	represent	the	data	by	a	vector	X	=	where	=	1	if	the	ith	item	sampled	is	defective	and	=	0	otherwise.	Because,	evidently,	max	R(F,	X	)	=	max	:F	:F	VarF	(X,)	n	M	n	,	0	Theorem
3.3.3	applies	and	the	result	follows.	o-§o	=	1	and	zl	=	Xt.	22	=	P�l	1-Po	�	�	6.	Our	aim	is	to	use	the	data	inductively,	to	narrow	down	in	useful	ways	our	ideas	of	what	the	"true''	P	is.	There	are	two	other	types	of	test	that	have	the	same	asymptotic	behavior.	Define	the	Neyman-Pearson	(NP)	test	function	.	3)	p(y	I	z)pz(z)	q(z	I	y)py(y	)	Eyq	(z	I	y)p	y(y	)
(B	.	Here	F;;	1	(a)	=	inf{x	:	Fn(x)	>	a	}	.	The	breakdown	point	will	be	discussed	in	Volume	II.	,p,	iterate	and	proceed.	where	!	(A.l2.8)	di	(A.	Now	we	may	either	have	some	information	about	the	proportion	of	geniuses	in	similar	cities	of	the	country	or	we	may	merely	have	prejudices	that	we	are	willing	to	express	in	the	fonn	of	a	prior	distribution	on	B.
The	following	model	is	useful	in	such	situations.	n	(1	.5.8)	p{x1,	.	See	Remark	4.1.	In	this	example	with	8o	=	{	(}0}	it	is	reasonable	to	reject	I-J	if	S	is	"much"	larger	than	what	would	be	expected	by	chance	if	H	is	true	and	the	value	of	()	is	00.	l(B)	'	I	I	'	'	II	I	i=l	The	Newton-Raphson	method	can	be	implemented	by	taking	X.	However,	if	we	are	comparing
a	treatment	and	control,	the	relevant	question	is	whether	the	treatment	creates	an	improvement.	i	270	Testing	and	Confidence	Regions	Chapter	4	(a)	Use	the	result	of	Problem	B.3.4	to	show	that	the	test	with	critical	region	[X	>	!"ox(	1	-	)	/2n]	,	where	x(l	-	a)	is	the	(1	-	o:)th	quantile	of	the	X�n	distribution,	is	a	size	a	test.	That	is,	1ri	is	the	frequency	of
shipments	with	i	defective	items,	i	=	0,	.	i	=	1,	.	(!.5.9)	if	every	Xi	is	an	integer	between	1	and	B	and	p(x	11	(1	.5.9)	can	be	rewritten	as	•	•	•	,	Xn,	0)	=	0	otherwise.	Most	accurate	upper	confidence	bounds	are	defined	similarly.	Thus,	in	Example	1.1.3,	taking	action	1	would	mean	deciding	that	D.	1	)	Note	that	Tp	(Y)	acts	as	a	prediction	interval	pivot	in
the	same	way	that	T	(	p,	)	acts	as	a	confidence	interval	pivot	in	Example	4.4.	1	.	Then	Pe	[X	�	k]	�	the	geometric	distribution	(9	(B)).	Then	Zr	=	Y1/8',	Z2	=	(Y2	Y1	)/8',	z,	=	(Y3	-	Y2)/8',	.	For	more	information	on	these	topics,	we	refer	to	Blackwell	and	Girshick	(	1954)	and	Ferguson	(	1967).	(a)	Show	that	T1	and	T2	are	equivalent	statistics	if,	and	only
if,	we	can	write	T2	=	H	(T1)	for	some	1-1	transformation	H	of	the	range	of	T1	into	the	range	of	T2.	There	are	clear	dependencies	between	starred	Pref3ce	to	the	Second	Edition:	Volume	I	•	XVI	sections	that	follow.	Here	E	is	the	natural	pararnerer	space	of	the	exponential	fautily	P	generated	by	(T	,	h).	Li�l	Y,	-	18.	L.	C2	'	-	I	'	'	'	'	!	''	=	0	for	xi	<	_	u	y·
C2'	1	-	1	for	2.	Find	(a)	P(X	+	2Y	<	4).	For	all	x	E	A.	Now	V	has	the	same	distribution	as	L�	1	J!i2	where	Y1	,	.	However,	the	result	holds	whenever	the	quantities	in	J(O	I	Oo)	can	be	defined	in	a	reasonable	fashion.	l	5.	Let	X,,	.	4,	.	stance,	if	N	=	50,	n	=	5,	and	D	=	For	in	20,	the	approximating	binomial	distribution	to	H(D,N,n)	is	8(5,	0.4).	Therefore,	z
E(Y,	I	Z)	=	-.	For	instance,	we	can	assign	two	drugs,	A	to	m,	and	B	to	n,	randomly	selected	patients	and	then	measure	temperature	and	blood	pressure,	have	the	patients	rated	qualitatively	for	improvement	by	physicians,	and	so	on.	AND	R.	A,	and	E.	Tben	Theorem	2.3.3.	lfP	above	satisfies	the	condition	of	Theorem	2.3.1.	c(8)	is	closed	in	[	and	T(x)	=	to
satisfies	(2.3.2)	so	that	the	MLE	ij	in	P	exists,	then	so	does	the	MLE	II	in	Q	and	it	satisfies	the	likelihood	equation	•	•	-	cT(ii)(t0	-	A(c(ii))	=	0.	where	1ri	=	1r	(	zi	)	is	the	probability	of	success	for	a	case	with	covariate	vector	zi	.	Thus,	if	we	are	told	we	obtained	k	successes	in	n	binomial	trials,	then	these	successes	D	are	as	likely	to	occur	on	one	set	of
trials	as	on	any	other.	(4)	We	can	decide	if	the	models	we	propose	are	approximations	to	the	mechanism	generating	the	data	adequate	for	our	purposes.	The	theory	of	this	school	is	expounded	by	L.	The	critical	problem	with	such	parametrizations	is	that	ev�n	with	"infinite	amounts	of	data,"	that	is,	knowledge	of	the	true	Pe,parts	of	fJremain
unknowable.	Discrete	Distributions	The	binomial	distribution	with	parameters	n	and	B	:	B(	p(k)	�	The	parameter	(	�	)	e'(J	-e)"-•,	n,	B).	Similarly,	r(a1	I	I)	=	8.35,	r(a,	1	1	)	3.74,	r(a,	I	I)	=	5.70	=	and	we	conclude	that	6	(1	)	=	a,.	Next	we	must	specify	what	close	means.	(a)	Show	that	min	(X1	,	,	Xn)	is	sufficient	for	fl	when	a	is	fixed.	Suppose	that	three
possible	actions,	ah	a2	,	and	a3,	are	available.	(b)	Which	estimate	has	the	smallest	MSE	for	estimating	0	=	�	(/1	2)	?	-	(c)	Justify	the	two-sided	F	test:	Reject	H	if,	and	only	if,	F	>	/(1	a/2)	or	F	<	f(n/2	)	,	where	f(	t)	is	the	tth	quantile	of	the	Fnz-I,nt	-I	distribution.	Example	1.3.2.	Prediction.	(a)	Show	that	wpen	p	=	0,	T	has	a	Tn_2	distribution.	,	UN	for	the
known	last	census	incomes.	The	book	first	discusses	non-	and	semiparametric	models	before	covering	parameters	and	parametric	models.	Show	how	to	find	critical	values.	Show	that	a	conjugate	family	of	distributions	for	the	Poisson	family	is	the	gamma	family.	Because	J-l	>	0,	the	D	solution	we	seek	is	il+.	(a)	The	U(O,	9)	fumily	88	Statistical	Models,
Goals,	and	Performance	Criteria	Chapter	1	(b)p(."	,	O)	=	{exp[-	2	log	0	+	log(2x)]}l[x	E	(0,0)]	(c)	p(x,	O)	=	�.	=	E	[g(Z)	-	Y]	2	The	MSPE	is	the	measure	traditionally	used	in	the	i	Section	1.4	33	Prediction	mathematical	theory	of	prediction	whose	deeper	results	(see,	for	example,	Grenander	and	Rosenblatt,	presuppose	it.	function	:	For	instance,	one
"estimator"	of	this	shape	is	the	scaled	empirical	distribution	�	F,(x)	jfn,	x(n	:S	x	<	x(i+l)•	j	=	1,	.	of	81	with	respect	to	82	is	defined	as	ep(81,	82	)	=	then	=	1r/2.	Compute	the	Rao	test	statistic	for	H	case.	,	Xn	as	a	random	samp	le	from	F,	and	also	write	that	Xb	...	Let	Sn	....__,	519	B(	n,	p)	,	then	P([Sn	-	np[	>	nc)	<	2	exp{-n	0.	(b)	Construct	an



experiment	and	three	events	for	which	(i)	and	(ii)	hold,	but	(iii)	does	not.	Theorem	5.3.1.	lj(i)	and	(ii)	hold,	then	m-	1	h(j)	(	)	Eh(X)	=	h(!l)	+	L	'I	!l	E(X	J·	j=	l	where	•	•	'	I	�-	-	!l)j	+	Rm	(5.3.	I	)	-	Section	5.3	First-	and	Higher-Order	Asymptotics:	The	Delta	Method	with	Applications	307	The	proof	is	an	immediate	consequence	of	Taylor's	expansion.	The
power	.35	and	=	achievable	(exactly,	using	the	SPLUS	package)	for	the	level	.0:>	test	for	0	163	is	0.86.	If	B	E	80,	/3(B,	o)	is	just	the	probability	of	type	I	error,	whereas	if	B	E	81,	/3(	B,	o)	is	the	power	against	(}.	The	statistic	is	equivalent	to	the	likelihood	ratio	statistic	,\	for	this	problem.	Thus,	if	we	want	the	probability	of	detecting	a	signal	v	to	be	at
least	a	preassigned	value	j3	(say,	.90	or	.95),	then	we	solve	(	z	(a)+	(	v../ii/(J)	)	=	!3	for	n	and	find	that	we	need	to	take	n	=	(	(J	/v	)2[z(l	-a)	+	z(/3)f	D	This	is	the	smallest	possible	n	for	any	size	a	test.	a	=	T	and	p,,	17,	O"	arc	arbitrary.	Before	the	experiment	is	performed,	the	information	or	belief	about	the	true	value	of	the	parameter	is	described	by	the
prior	distribution.	,	Xm,	Y1	,	.	We	next	give	a	representation	of	the	process	whereby	the	statistician	uses	the	data	to	arrive	at	a	decision.	..-.	In	one	of	his	famous	experiments	laying	the	foundation	of	the	quantitative	theory	of	genetics,	Mendel	crossed	peas	heterozygous	for	a	trait	with	two	alleles,	one	of	which	was	dominant.	A	very	important	class	of
situations	arises	when,	as	in	Example	1.1.4,	we	have	a	vector	z,	such	as,	say,	(age,	sex,	drug	dose)	T	that	can	be	used	for	prediction	of	a	variable	of	interest	Y,	say	a	50-year-old	male	patient's	response	to	the	level	of	a	drug.	�2	Li�2	Li	�2	Li	u,-,	8.	(6.5.7)	More	details	are	discussed	in	what	follows.	A	proof	is	sketched	testing	problem	H	Tn	in	Problem
4.9.2.	In	Problem	4.9.	1	1	we	argue	that	6	=	(	!1	-	f,Lo	)	/	a.	This	0-	l	loss	function	can	be	written	as	0	-	!	loss:	l(8,	a)	=	0	if	8	E	e.	,	Xn)	L	t=l	are	a	sample	from	a	probability	P	2	is	the	which	evaluated	at	S	x)	on	R	and	1(A)	is	the	indicator	of	the	event	A.	It	follows	that	striving	for	numerical	accuracy	of	ord�r	smaller	than	n	-	112	is	wastefuL	Unfortunately
it	is	hard	to	translate	statements	about	orders	into	specific	prescriptions	without	assuming	at	leaSt	bounds	on	the	constants	involved.	,qd(ll))	and	a	=	(a,,	.	17)	'	�	X,)	Cov(X1,	_	.	2	.	t	>	0	be	a	collection	of	natural	number	valued	random	variables.	,	Xn	is	a	sample	from	a	P(A)	family.	This	is	known	as	Fisher's	exact	test.	ln	general,	Zi	is	a	nonrandom
vector	of	values	called	a	covariate	vector	or	a	vector	of	explanatory	variables	whereas	Yi	is	random	and	referred	to	as	the	response	variable	or	dependent	variable	in	the	sense	that	its	distribution	depends	on	zi.	Verify	that	(6.5.4)	is	as	claimed	formula	(2.2.20)	for	the	regression	described	after	(6.5.4).	Wbat	would	you	-	(B/2)t�	+	€i,	i	=	1,	.	RuPPERT,
Transformation	and	Weighting	in	Regression	New	York:	Chapman	and	Hall,	1988.	8.	Deduce	from	Theorem	1.6.1	that	if	X�o	.	Alternatively	we	can	appeal	to	Corollary	2.3.1	directly	D	(Problem	2.3.10).	M.,	Mathematical	Analysis,	2nd	ed.	'	'	Section	A.18	475	References	(5)	The	integral	in	(A.8.12)	may	only	be	finite	for	"almost	all"	x.	1.6.3	Building
Exponential	Families	Submodels	A	submodel	of	a	k-parameter	canonical	exponential	family	{	q(x,	17);	11	E	£	an	exponential	family	defined	by	'	I	1	p(x,	8)	=	q(x,	ry(8))	I	I	c	Rk}	is	(1	.6.12)	where	6	E	8	C	R1,	l	<	k,	and	17	is	a	map	from	8	to	a	subset	of	Rk.	Thus,	if	X	is	discrete	taking	on	k	values	as	in	Example	1	.6.7	and	X	=	(X1,	.	The	basic	asymptotic
tools	that	will	be	developed	or	presented,	in	part	in	the	text	and,	in	part	in	appendices,	are	weak	convergence	for	random	processes,	elementary	empir	ical	process	theory,	and	the	functional	delta	method.	As	a	consequence	our	second	edition,	reflecting	what	we	now	teach	our	graduate	stu	dents,	is	much	changed	from	the	first.	(6.5.	1	2)	The	left-hand
side	of	(6.5.	10)	is	of	product	form	A(	17	)	[1	/	c	(	7)	]	whereas	the	right-hand	side	cannot	always	be	put	in	this	form.	12.	Because	!l(!L)	is	increasing,	a	(	c)	=	sup{fl(IL)	:	fL	<	0}	The	smallest	c	for	which	�(-c)	=	fl(O)	=	(-c).	Show	that	the	only	variance	stabilizing	transformation	h	such	that	h(O)	=	0,	h(	l	)	=	1,	and	h'(t)	>	0	for	all	t,	is	given	by	h(t)	=	(
2/7r)sin-	1	(vt).	Math.	Let	U(l	l	<	·	·	·	<	U(n)	be	U1	,	.	There	are	many	pos	sible	choices	of	estimates.	x	E	{	0.	Suppose	the	monthly	salaries	of	state	workers	in	a	certain	state	are	modeled	by	the	Pareto	distribution	with	distribution	function	14.	{flo,	.	Let	>-	where	a	>	0,	=	b	Suppose	that	given	a-2,	xl	,	·	·	·	,	Xn	are	i.i	.d.	We	would	also	like	to	thank	tlte
colleagues	and	fiiends	who	Inspired	and	helped	us	to	enter	the	field	of	statistics.	(a)	Show	that,	if	n	>	2,	the	likelihood	equations	t	'	w	�	{	(X;:	Jt)	t=l	a	unique	solution	-	log	fo	that	Cfl,	O').	,	n,	eo	=	0	where	€i	are	independent	identically	distributed	with	density	f.	'	'	I	11.	,	not	UMP.	Suppose	that	T	has	a	continuous	distribution	Fe.	then	the	p-value	is	U
=	1	-	F0	(T).	Now,	if	(L52)	holds,	Po	[T	=	t;]	=	{x:T(x)=t,}	p(x	,	O	)	=	g(t;	,	O	)	{x:T(x)=t;}	h(x).	Y1,	...	In	estimating	a	real	valued	parameter	v(P)	or	q(6')	if	P	is	parametrized	the	most	commonly	used	loss	function	is,	Quadratic	Loss:	l(P,	a)	=	(v(P)	-	a)2	(or	l(O,a)	;	;	i'	r	"	•	=	(q(O)	-	a)2).	G	are	not	necessarily	nonnal	but	that	<	Var(	Xf)	<	oo.	See	Problem
3.2.9.	Finally,	in	the	Bayesian	framework	with	a	prior	distribution	on	the	parameter,	the	approach	of	Example	3.2.2(b)	is	the	one	to	take	in	all	cases	with	80	and	81	simple.	a	)	%	confidence	424	Inference	in	the	M	u	lti	para	meter	Case	10.	Roy.	(0	For	two	estimates	01	and	..-.	HUBER,	W.	Statist.,	3,	1038-1044	(1975a).	See	also	Section	1.4.	,	Xn	are
indepen	As	a	consequence	of	(A.	In	the	two	sample	models	this	is	implied	by	the	constant	treatment	effect	assumption.	a	is	intetpreted	For	instance,	testing	techniques	are	used	in	searching	for	regions	of	the	genome	that	resemble	other	regions	that	are	known	to	have	significant	biological	activity.	Specifically,	upon	substituting	the	f3(r,	s)	density
(B.2.	l	l	)	in	(1.2.9)	we	obtain	L7	=	�	(Jk+r-I	(	1	_	c	8)	n-k+s-I	(1.2.10)	The	proportionality	constant	c,	which	depends	on	k,	r,	and	s	only,	must	(see	(B.2.11))	be	B(k	+	r,	n	-	k	+	s)	where	B(·,	·)	is	the	beta	function,	and	the	posterior	distribution	of	B	k	is	f3	(k	+	r,	n	-	k	+	s	).	This	result	was	proved	in	various	forms	by	Fisher,	Neyman,	and	Halmos	and
Savage.	ANDERSON,	Numen"cal	Analysis	New	York:	Prentice	Hall,	DE	GROOT,	M.	See	Problem	1.6.17	for	details.	,	1.1.4	Examples,	Regression	Models	We	end	this	section	with	two	further	important	examples	indicating	the	wide	scope	of	the	notions	we	have	introduced.	Show	that	(a)	Likelihood	ratio	tests	are	of	the	form:	Reject	if,	and	only	if,	Hint:
log	-'(	x)	�	0,	if	ii2	lv-5	0,	P0	[Z	>	t	yV/k]	is	increasing	in	J,	P6	[]ZJ	>	in	[J[.	Show	that	l�p	is	not	unbiasedly	es	for	all	timable.	:·	'	n	-	•	!	I	Section	4.1	215	Introduction	model	needs	to	permit	distributions	other	than	B(	n,	p),	for	instance,	(	1	-	E)c5	�	+	cB(	n)	p),	where	1	E	is	the	probability	that	the	assistant	fudged	the	data	and	5!.!.	13.10)	The	moment
generating	function	of	X	is	given	by	1	Mx(t)	=	e'	o,	i=l	•	.	I	XJ,	.	It	follows	that,	in	this	case,	the	optimal	estimator	when	it	exists	is	also	the	optimal	predictor.	(	B,	Yl	),	.	•	•	Example	1,6,8.	Note	that	logp(x,	8)	is	differentiable	for	all	8	>	x,	that	is,	with	probability	1	for	each	8,	and	we	can	thus	define	moments	of{)/88	log	p(x,	8).	HAMPEL,	F.,	HAMPEL,	F.,
E.	Assume	that	Fo	has	�	density	fo.	In	fact	we	can	write	X,	�	Jt	(	l	-	/3)	+	{3X,_1	+	,,	i	�	2,	,	,	,	,	n,	X1	�	I'	+	'',	,	An	example	would	be,	say,	the	elapsed	times	X	1	,	,	Xn	spent	above	a	fixed	high	level	for	a	series	of	n	consecutive	wave	records	at	a	point	on	the	seashore.	(b)	Let	.,-(B)	o<	ol	(>-')	exp	{	-�	vB},	v	>	0,	.\	>	0;	B	>	0.	Theorem	2.4.3.	Suppose
{Po	:	()	E	9}	is	a	canonical	exponential	family	generated	by	(T,h)	satisfying	the	conditions	of	Theorem	2.3.1.	Let	S(X)	be	any	statistic,	then	136	Methods	of	Estimation	Chapter	2	(a)	The	EM	algorithm	consists	of	the	alternation	•	A(Bnew)	=	Eo01d	(T(X)	I	S(X)	=	s)	(2.4.	18)	Bold	=	Bnew	·	(2.4.19)	unique.	We	return	to	this	in	Section	5.5.	]1	3.5.3
Robustness	Finally,	we	turn	to	robustness.	vanance.	1	and	good	with	probability	.9	independently	of	the	other	items,	this	will	continue	to	be	the	case	for	the	items	left	in	the	lot	1008	-	X,	the	number	of	defectives	left	after	the	drawing,	is	independent	of	X	and	has	a	8(81,	0.1)	distribution.	The	problem	of	selecting	the	better	of	two	treatments	or	of
deciding	whether	the	effect	of	one	treatment	is	beneficial	or	not	often	reduces	to	the	pr9blem	of	deciding	whether	B	<	0.	The	algebra	showing	Rn	(80)	=	x	2	in	Section	6.4.	l	now	leads	to	the	Rao	statistic	=	.,	=	1J	=	Rn	(8("')	�	[Ni	-	nej	(ij)]2	=	j�	=l	1J	nBJ·	("')	X	2	where	the	right-hand	side	is	Pearson's	x	2	as	defined	in	general	by	(6.4.	1	)	.	}	Then	(2.4.
15)	.	Give	a	probabilistic	interpretation	of	this	Hint:	Use	the	Taylor	expansions	for	e0../fi	and	e-o.,;y	in	powers	of	yfij.	,	Xk	)	T	is	t,	[x,	C	:',J	log	=	•	.	'I	!I	,	'	'	i	'	I	'	176	Measures	of	Performance	Chapter	3	More	specifically,	we	show	how	finding	minimax	procedures	can	be	viewed	as	solving	a	game	between	a	statistician	S	and	nature	N	in	which	S	selects
a	decision	rule	8	and	N	selects	a	prior	1r.	(n	.	)	sample.	(a)	Suppose	Z1	,	z;	have	a	N(O,	1)	distribution.	Note	T	=	that	E[	(Xn+	I	-	9	)	9]	=	E{E	(Xn	+	l	-	e)e	I	9	=	B}	=	0.	The	danger	is	that,	if	they	are	false,	our	analyses,	though	correct	for	the	model	written	down.	This	quantity	is	called	the	size	of	the	test	and	is	the	maximum	probability	of	type	I	error.
B.	�	-----------------------------------------------------....	(2)	We	shall	use	the	notation	g(x+O)	for	limx.	TABLE	1.3.4.	Risk	points	(R(	01,	ot),	R(B,,	51))	1	•	R(01,	8;)	R(O,,	5;)	1	0	12	2	7	7.6	3	3.5	9.6	4	3	5.4	5	10	1	6	6.5	3	7	1	.5	8.4	8	8.5	4.0	9	5	6	It	remains	to	pick	out	the	rules	that	are	"good"	or	"best."	Criteria	for	doing	this	will	be	D	introduced	in	the	next	subsection.
'	•	•	•	'	I	Both	of	these	assertions	follow	immediately	from	Definition(B.	(i)	lfY	and	Z	are	independent,	then	p(y	I	z)	=	py(y)	and	the	conditional	distribution	coincides	with	the	marginal	distribution.	REFERENCES	BERGER,	J.	,	Yn1	correspond	to	the	group	receiving	the	first	treatment,	Yn1	+	1	,	that	getting	the	second,	and	so	on.	p.	I	e,,	.	j=l	Let	C"
denote	the	interior	of	the	range	of	(c,	(B),	.	0'.	(c)	Show	that	gc(x)/'P(x)	is	of	order	exp{x2}	as	j	x	j	�	oo.	t=l	On	satisfies	(6.2.3).	P0	[Tn	2':	t	]	is	increasing	in	!	.	Without	this	device	we	could	not	know	whether	observed	differences	in	drug	performance	might	not	(possibly)	be	due	to	unconscious	bias	on	the	part	of	the	experimenter.	(2)	Give	careful
proofs	of	the	major	"elementary"	results	such	as	the	Neyman-Pearson	lemma,	the	Lehmann--Scheff6	theorem,	the	information	inequality,	and	the	Gauss-Markoff	theorem.	So	to	get	information	about	8,	a	sample	of	n	is	drawn	without	replacement	and	inspected.	In	fact.	,	xTn;	Yt,	...	Here	only	two	actions	are	contemplated:	accepting	or	rejecting	the
"specialness"	of	P	(or	in	more	usual	language	the	hypothesis	H	:	P	E	Po	in	which	we	identify	P0	with	the	set	of	"special'"	P's).	'	in	)	is	any	permutation	of	(1,	.	Maintaining	our	geometric	intuition	we	see	that,	if	E(X)	=	E(Y)	=	0,	orthogonality	simply	corresponds	to	nncorrelatedness	and	Pythagoras's	theorem	is	just	the	familiar	•	Var(X	+	Y)	=	Var(X)	+
Var(r	)	if	X	and	Y	are	uncorrelated.	Suppose	that	X	has	a	normal	N(ft,	cr2	)	distribution	and	that	Y	independent	of	X	and	has	a	N(	-y,	r2)	distribution.	It	will	be	convenient	to	assume(l)	from	now	on	that	in	any	parametric	model	we	con	sider	either:	,..._,	(	l	)	All	of	the	P,	are	continuous	with	densities	p(x,	0);	(2)	All	of	the	Po	are	discrete	with	frequency
functions	p(x,	8),	and	there	exists	a	set	{x1	,	x2	,	.	(b)	Show	that	N	=	(N1,	.	Suppose	8	is	a	vector.	Here	J.L(z)	is	an	unknown	function	from	R	d	to	R	that	we	are	interested	in.	By	Theoretn	5.3.3,	y'n[h(X)	-	h(JL)]	".	(The	decision	is	correct)	l(0,	a)	=	1	otherwise	(The	decision	is	wrong).	1rk	{	F	:	F	fo	N(l',	M)	for	some	I'}	=	0.	Then	Sn	P	�	-+	J-L.	It	follows
that	the	NILE	of	{3	solves	E{3	(Tj)	Ef3	(z	r	x)	=	z	r	x,	where	Z	=	llzij	llrnxp	is	the	design	matrix.	All	of	these	correspond	to	geometric	results	in	Euclidean	space.	,	Xn	is	a	sample	from	a	truncated	binomial	distribution	with	I	p(x,	0)	=	(:)	'	'	'	I	.	Show	that	the	conditional	distribution	of	aX	+	bY	given	eX	+	dY	=	t	is	normal.	Box,	G.	Because	we	do	not	know
whether	A	or	B	is	to	be	preferred,	we	test	H	:	B	=	0	versus	K	:	8	-1-	0.	>	0.	The	population	is	so	large	that,	for	modeling	purposes,	we	approximate	the	actual	process	of	sampling	without	replacement	by	sampling	with	replacement.	P[T(t.)	<	t]	�	0	and	In	T(�)	Suppose	that	instead	Var(YJ	).	We	say	that	a	procedure	6	improves	a	procedure	J'	if,	and	only
if,	R(B,6)	<	R(B,6')	for	all	(}	with	strict	inequality	for	some	(}.	,	Yn	)	is	not	a	sequence	of	1's	followed	by	all	O's	or	the	reverse.	The	notion	of	such	transformations	can	be	extended	to	the	following	situation.	Variance	Stabilizing	Transfonnations	Example	5.3.4.	In	Appendices	A	and	B	we	encounter	several	important	families	of	dis	tributions,	such	as	the
binomial,	Poisson,	gamma,	and	beta,	which	are	indexed	by	one	or	more	parameters.	The	proof	of	the	spectral	theorem	is	somewhat	beyond	our	scope	MacLane	(	1	953,	1	pp.	(b)	How	would	you,	in	principle,	use	this	result	to	construct	a	test	of	H	similar	to	the	2	x	test	with	probability	of	type	I	error	independent	of	Tfit	,	1Ji2	?	Thus,	by	Chebychev's
inequality,	if	oo,	Pp.	a'	Pp[]Xn	-	I']	>	e]	::;	2exp	{	-	�ne2}	.	1	by	taking	q(0)	equal	to	the	noncentrality	parameter	governing	the	distribution	of	the	statistic	under	the	alternative.	_...._	llm+l	�	Om	+	l-	1	(9m)Dl(9m)·	Show	that	for	GLM	this	method	coincides	with	the	Newton-Raphson	method	of	Section	2.4.	'	i	i	•	•	j	1	l	1	j	I	'	1	'	.	•	•	p(e	l	)p(c,	l	e,	)p(e3	1
e�,e,)	,	,	p(e,.	W.,	Exploratory	Data	Analysis	Reading,	MA:	Addison-Wesley,	1972	.	,	e�	)	T	ranges	over	an	open	subset	of	Rq	and	Bj	Boj	,	j	q	+	1	,	.	New	York:	AND	D.	By	applying	Fo	to	hnth	sides	of	t	5	to(1-a),	S(t)	�	{B	E	6	:	Fo(t)	<	1	-	a}.	(2)	A	second	major	approach	has	been	to	compare	risk	functions	by	global	crite-	Section	1.3	27	The	Decision
Theoretic	Framework	ria	rather	than	on	a	pointwise	basis.	They	need	to	be	read	only	as	the	reader's	curiosity	is	piqued.	where	the	errors	are	independent,	identically	distributed,	and	symmetric	about	0	with	com	mon	density	f	and	d.f.	F.	Derive	maximum	likelihood	estimates	in	the	following	models.	Logistic	Regression.	26	Statistical	Models.	P	R	E	D	I
CT	I	O	N	I	NT	E	RVA	LS	I	n	Section	variable	Y.	'	n)	.	In	the	discrete	case	we	appeal	to	the	product	rule.	Reid.	•	:	P[N,;	-	where	(	B,	C,	D,	.	If	the	equation	Fo(t)	�	1	-	a	has	a	solution	li.(t)	in	e.	If	!v!x	is	well	defined	in	some	neighbor	hood	of	zero,	Kx	can	be	represented	by	the	convergent	Taylor	expansion	00	c	Kx(s)	=	L	;sj	.	,	Ap)PT	=>	A-1	�	P	diag(>-�
1	,	.	(Rayleigh	density)	=	(f)	f(x,	8)	=	8cx'--1	exp{	-8x'},	x	>	0;	c	constant	>	0;	8	>	0.	,	n	(0,	1]	is	a	known	constant	and	t:	1	,	.	Drew,	C.	The	second	follows	from	(B.	To	see	that	this	is	a	linear	model	we	relabel	the	observations	as	Y1,	Yn.	where	Yn1+n2	to	Y1	,	.	Suppose	in	Problem	6.4.6	that	H	is	true.	The	population	is	sampled	with	replacement	and	n
members	of	the	population	are	observed	and	their	labels	X1,	.	'	'	l	'	'	'	432	Inference	in	the	Multipara	meter	Case	Chapter	6	4.	Establish	the	following	relation	due	to	Sheppard.	Equation	(B.	Again	all	calculations	involving	one	member	of	the	family	can	be	referred	back	to	any	other	because	for	any	a,	T	>	0,	Similarly	let	F;	be	the	d.	Then	Y	bivariate	log
nonnal	distribution.	Then	Let	E	=	E2	E21	En	E1	1	,	E22	are	spd.	For	instance,	in	Example	1.1.1	contractual	agreement	between	shipper	and	re	ceiver	may	penalize	the	return	of	"good"	shipments,	say,	with	(J	<	8o.	If	(say)	X	represents	the	amount	owed	in	the	sample	and	v	is	the	unknown	total	amount	owed,	it	is	natural	to	seek	v(X)	such	that	P[v(X	)	>
]	>	1-a	v	(1.3.8)	for	all	possible	distributions	P	of	X.	A	proportional	hazard	model.	X11	have	finite	variances,	we	obtain	as	a	consequence	of	(A	1	1	.	Do	these	variables	have	a	bivariate	normal	distribution?	l	l	.20)	·t=l	If	X1	and	X2	are	independent	and	X1	and	X2	are	integrable,	then	or	in	view	of(A.l	l	.	Of	course,	other	economic	loss	functions	may	be
appropriate.	,	Xn	be	a	sample	from	f(x	0),	()	E	R.	H.,	AND	B.	2	fo	(x	)	�	3	r(o'(x)	I	x)	=	E(l(O,o'(X))	1	X	=	x].	Assume	that	there	exist	functions	that	the	model	for	Yi	can	be	written	as	h(y,	T),	b(B),	g(p,)	and	c(T)	such	o,y	-	b(O,)	}	{	p(y,	O,)	�	h(y,r)	exp	c(T)	g(!"i)	Var(Y)/c(r)	�	b"(B).	Find	the	median	v	and	the	mean	J1	for	the	values	of()	where	the	mean
exists.	Suppose	A0-A4	hold	and	8�	is	fo	consistent;	that	is,	8�	=	80	+	Op(n-	112	).	As	a	first	illustration,	consider	the	oil-drilling	example	(Example	1.3.5)	with	prior	1r(ll1	)	=	0.2,	1r(ll,)	=	0.8.	Suppose	we	observe	x	=	0.	Show	that	if	M	is	the	expected	sample	N	E(	M)	�	L	1r,	�	n.	Does	a	new	drug	improve	recovery	rates?	R	is	called	the	empirical
distribution	function,	-	where	I	j	(X1,	•	.	•	'	I	(c)	Suppose	that	T	and	Y	have	densities	fo(t)	and	g(t).	,Xrn	areidentically	distributed	as	are	Y1,	...	•	'	'	I	Section	4.3	Uniformly	Most	Po�rful	Tests	and	Monotone	likelihood	Ratio	Models	229	Proof	(I)	follows	from	Oo	among	the	class	of	tests	with	level	a	=	Eo,61	(X).	(See	Example	2.4.3.)	Hint:	(a)	Thefunction
D(	a,	b)	�	L:;	1	w	(aX;	-	b)	-	n	log	a	is	strictly	convex	in	(a,	b)	and	lim(a,b)-.(ao,bo	)	D	(a	,	b)	=	x	if	either	ao	=	0	or	or	bo	=	(b)	Reparametrize	by	a	=	;	,	b	=	:	and	consider	varying	a,	b	successively.	P(Y	<	y)	=	e	,	-	-	1	.	we	need	only	keeep	track	of	X(n)	=	max(X1,	.	The	theory	we	have	devel	oped	demonstrates	that	if	C,(Tn)	is	an	MLR	family,	then	rejecting
for	large	values	ofTn	is	UMP	among	all	tests	based	on	Tn.	Reducing	the	problem	to	choosing	among	such	tests	comes	from	invariance	consideration	that	we	do	not	enter	into	until	Volume	II.	By	expanding	the	product	(X	1	-	E(X	J	)	)	(	X2	-	E(	X2	))	and	using	(A.	Ifa	solution	of(2.4.18)	exists	it	is	necessarily	�	(b)	If	the	sequence	of	iterates	{B-m}	so
obtained	is	bounded	and	the	equation	A(	B)	=	Ee(T(X)	I	S(X)	=	s)	•	(2.4.20)	�	has	a	unique	solution,	then	it	converges	to	a	limit	B",	which	is	necessarily	a	local	maximum	of	q(s	B).	=	I	XI,	.	,	n,	,	i	Section	4.10	275	Problems	and	Complements	then	E7	1	Xi	is	an	optimal	test	statistic	for	testing	H	:	8	=	8o	versus	I\	;	8	>	80.	For	instance,	in	Example	1.1.1,
we	observe	X	and	the	family	Pis	that	of	all	hypergeometric	distributions	with	sample	size	nand	population	size	N.	These	considerations	lead	to	the	asymmetric	formulation	that	saying	P	E	Po	(	(}	E	8o)	corresponds	to	acceptance	of	the	hypothesis	H	:	P	E	Po	and	P	E	P1	corresponds	to	rejection	sometimes	written	as	K	:	P	E	pl_(l)	As	we	have	stated
earlier,	acceptance	and	rejection	can	be	thought	of	as	actions	a	=	0	or	1,	and	we	arc	then	led	to	the	natural	0	1	loss	l(O,	a)	=	0	if	()	E	Sa	and	1	otherwise.	Consider	the	three	estimates	T1	Y,	T2	(	1	I	2n)	2.:::	1:1	Yi	+	(	3	I	2n)	2.:::	�=	�	n+	1	}i,	12.	One	has	The	first	system	costs	$106,	the	signal-to-noise	ratio	vfao	=	2,	the	other	has	vfao	=	other	$105•
One	second	of	transmission	on	either	system	costs	$103	each.	That	is,	it	is	distribution	free.	BAYESIAN	MODELS	1.2	Throughout	our	discussion	so	far	we	have	assumed	that	there	is	no	information	available	about	the	true	value	of	the	parameter	beyond	that	provided	by	the	data.	Then	=	p(y,z)	p(	y	I	z)	=	=	(B.	Suppose	X1	,	•	•	•	,	Xn	is	as	in	Problem
1.5.3.	In	each	of	the	cases	(a),	(b)	and	(c),	show	that	the	distribution	of	X	forms	a	one-parameter	exponential	family.	By	Coronary	3.4.1	we	see	that	the	conclusion	that	X	is	UMVU	follows	if	•	•	•	,	-	�	Var(X)	I	'	I	I	,,	Now	Var(X)	]!	l	nl,	(B)	'	(3.4.18)	�	a2/n,	whereas	if	.;	=	nE(T;(X))	+	&l=l	e	(:)2	ne	el	(	1	+	E7	11	ee1	-	ee3	)	=	n>.;	(l	-	-1;)	=	Var(T;	(X)).	the
probability	of	the	wrong	decision	is	at	most	�	a.	(b)	(6.3	.	Show	that	in	the	regression	example	with	interval	for	/31	in	the	Gaussian	linear	model	is	p	=	r	=	2,	the	100(1	z.	=	E	1,	.	After	the	va1ue	x	has	been	obtained	for	X,	the	information	about	()	is	described	by	the	posterior	distribution.	l	).	(x,	(c)	Show	that	the	tangents	to	So	at	the	two	points	where
the	line	y	�	1'2+p(a2/	cr,)(x	J..t	d	intersects	Sc	are	vertical.	Hint:	A	Bayes	test	rejects	(accepts)	H	if	ll	oS�ec�t:�io�o�4.,.l=O�P�m�b�le�m�n�d�C�o	�,�·	�m�p21e=m2e=''='�---(a)	Using	a	pivot	based	on	the	MLE	------	----7	--�27	(2L:r	0.1,	where	8,	8	are	given	by	(4.4.3).	294	Testing	and	Confidence	Regions	Chapter	4	(a)	Show	that	the
LR	test	of	H	:	af	=	a�	versus	K	:	ai	>	af	is	of	the	form:	Reject	if,	and	only	if,	F	�	[(n1	-	1)/(n2	-	l)]E(}j	-	Y)	2/E(X;	-	X)2	>	C.	Find	a	function	a	simple	form	and	a	tabled	distribution	under	H.	•	•	'	(}	with	distribution	given	by	l	.	The	most	common	choice	of	g	is	the	linear	f011t1,	(3)	g((3	,	z)	�	L.;�,	f31	zi	�	zT	(3	so	that	(b)	becomes	(b')	This	is	the	linear
model.	The	number	of	defectives	in	the	first	example	clearly	has	a	hypergeometric	distribution;	the	number	of	a	particles	emitted	by	a	radioactive	substance	in	a	small	length	of	time	is	well	known	to	be	approximately	Poisson	distributed.	(b)	In	Example	2.4.6,	verify	the	M-step	by	showing	that	BeT	=	(Jl-	1	,	/1-2	,	a�	+	Jl-i,	a�	+	/1-�,	fXTl	0"2	+	/1-1Jl2
)	2.	That	is,	the	effect	of	z	on	Y	is	through	J.1,(z)	only.	The	class	Q	of	possible	predictors	g	may	be	the	nonparametric	class	QN	p	of	all	g	:	Rd	-----Jo	or	it	may	be	to	some	subset	of	this	class.	P.,	The	Feynmo.n	Lectures	on	Physics,	v.	(b)	Suppose	that	max	(x1	,	.	In	fact	(Problem	6.4.2),	the	(NiJ	-	RiCJ	/n	)	are	all	the	same	in	absolute	value	and,	where	z	�l	tt
[	1	R	J	-	�=1	J=	l	l	•	Section	6	.	Which	of	the	following	statistics	are	equivalent?	Amer.	LEHMANN,	"Descriptive	Statistics	for	Nonparametric	Models.	A.13.7	If	X	is	the	number	of	defectives	(special	objects)	in	a	sample	of	size	n	taken	without	X	has	If	the	sample	is	taken	with	replacement,	X	has	replacement	from	a	population	with	D	defectives	and	N	-
D	nondefectives,	then	H(	D,	N,	n)	distribution	(see	(A.6.	I	0)).	In	other	'	situations	certain	P	are	"special"	and	we	may	primarily	wish	to	know	whether	the	data	,	support	..specialness"	or	not.	In	each	of	the	following	examples:	(a)	State	whether	the	conditional	distribution	of	Y	given	Z	or	of	neither	type.	It	turns	out	to	be	useful	to	know	transformations	h,
called	variance	stabilizing,	such	that	Var	h(X)	is	approximately	independent	of	the	parameters	indexing	the	family	we	are	considering_	From	(5_3_6)	and	'	Section	5.3	First-	and	Higher-Order	Asymptotics:	The	Delta	Method	with	Applications	317	2	2	l	(1')]	)	[li	a	fn.	9	Thus,	the	posterior	risks	of	the	actions	a1,	a2,	and	aa	are	r(a,	I	0)	r(a,	I	0)	+	-	-	2,	8
i(02,	at)	g	r(a,	I	0)	9	10.67	5.89.	TOPICS	IN	MATRIX	THEORY	AND	ELEM	ENTARY	H	I	LBERT	SPACE	THEORY	8.10	8.	The	hypothesis	that	the	characteristics	are	assigned	independently	becomes	H	:	(Jij	'TJi	1	T}j	2	for	1	:::;	i	:::;	a	,	1	:::;	j	:::;	b	where	the	'TJi	1	,	T}j	2	are	nonnegative	and	2:	�=	1	'TJi	1	2:�	=	1	T}j	2	=	1.	i	<	j.	Clearly,	Example	1.1.3(3)
is	a	special	case	of	this	model.	A	I	!	2	I	Statistical	Models,	Goals,	and	Performance	Criteria	Chapter	1	priori,	in	the	words	of	George	Box	(	1979),	"Models	of	course,	are	never	true	but	fortunately	it	is	only	necessary	that	they	be	useful."	In	this	book	we	will	study	how,	starting	with	tentative	models:	I	(I)	We	can	conceptualize	the	data	structure	and	our
goals	more	precisely.	Wiley	&	Sons,	1964.	,	Y,l	be	independently	distributed	according	to	N(p,,	0"2)	and	.	Thus,	we	observe	independent	XI	,	.	u,v;,	�	Vt/v	v,-.	,	1jT	and	all	c.	Show	that	2	log.\(X,,	li	:	1	<	i	<	n)	has	a	null	distribution,	which	is	a	mixture	of	point	mass	at	0,	sin	.6.	To	achieve	level	a	and	power	at	least	{3,	first	let	Co	be	the	smallest	number	c
such	that	...-t	Then	let	n	be	the	smallest	integer	such	that	P,,	[T	2:	co]	>	fJ	where	Oo	is	such	that	q(	Oo)	=	q0	and	01	is	such	that	q	(0	1	)	=	q1	.	Are	sex	and	admission	to	a	university	department	independent	classifications?	,	UN	.	Consider	the	model	(see	Example	1	.	Now	we	can	write	the	likelihood	as	k	k	qo(x,	a	)	�	exp{L	;�·(x)	-	n	log	L	exp(ct;)}.	and
a,	X	and	s2	are	independent	with	X	�	N(iJ.,a	2	jn)	and	(n		l)s2	ja2	"'	X�-l·	This	leads	to	p(X,	s2	I	J.L,	a2).	Find	minimal	sufficient	statistics	for	the	following	three	cases:	(i)	p,,	TJ,	(ii)	p,,	17	<	oo,	0	<	a,	T.	11/J'(B)	[	<	Var(T(X))	ar	(!	logp(X,B)	).	Thus,	we	have	a	location	parameter	family.	•	•	•	=	Pabc.	They	are	included	both	as	a	check	on	the	student's
mastery	of	the	material	and	as	pointers	to	the	wealth	of	ideas	and	results	that	for	obvious	reasons	of	space	could	not	be	put	into	the	body	of	the	text.	It	can	be	thought	of	as	the	probability	that	the	test	will	"detect"	that	the	alternative	8	holds.	Edgeworth	Approximations	The	normal	approximation	to	the	distribution	of	X	utilizes	only	the	first	two
moments	of	X.	whereas	the	receiver	or	is	special	and	the	general	does	not	wish	to	keep	"bad,"	(}	2	Bo,	shipments.	This	two-dimensional	problem	is	than	one-dimensional	problem	Example	2.4.1	because	the	equaessentially	no	harder	the	of	�	�	tion	leading	to	Anew	given	bold	•	(2.3.5),	is	computationally	explicit	and	simple.	Show	that	if	Wo	C	Wt	are
nested	logistic	regression	models	of	dimension	q	<	r	<	k	and	m1,	.	,	Yn,	respectively,	the	responses	of	m	subjects	having	a	given	disease	given	drug	A	and	n	other	similarly	diseased	subjects	given	drug	B.	(b)	Find	the	density	of	R	if	p	�	0.	Let	Nj	be	the	number	of	xi	which	equal	Vj·	.	"Hierarchical	Credibility:	Analysis	of	a	Random	Effect	Linear	Model
with	Nested	Classification,"	Scand.	J	'	""	(9)a	�	'i7Ee(ar9)	and	apply	Theorem	3.4.3.	22.	and	(t]	denotes	the	greatest	integer	<	t.	and	If	S	c	EU	is	finite,	then	EU	Rk	is	convex	and	closed,	g	ij	convex	on	S,	E	S,	-h	is	(strictly)	P[U	E	S]	Eg(U)	exists	and	Eg(U)	>	g(EU)	with	equality	if	and	only	if	there	are	a	and	=	I,	(B.9.3)	bkx	1	such	that	In	particular,	if	g	is
strictly	convex,	equality	holds	in	(B.9.3)	if	and	only	if	P[U	for	some	Ckxl·	'	"	=	c]	=	'	'	l	1	For	a	proof	see	Rockafellar	(1970).	In	any	case	all	our	models	is	in	are	generic	and,	as	usual,	''The	Devil	the	details!"	All	the	principles	we	discuss	and	calculations	we	perform	should	only	be	suggestive	guides	in	successful	applications	of	statistical	analysis	in
science	and	policy.	,	K,	1.3.4.)	"'£�	1	Suppose	the	u;	can	be	relabeled	into	h	=	N.	=	2:�	1	x;,	D	Example	4.3.3.	Consider	the	one-parameter	exponential	family	mode!	p(x,O)	=	h(x)	exp{ry	(O)T(x)	-	B	(O)}	.	n	.	This	chapter	uses	multivariate	calculus	in	an	intrinsic	way	and	can	be	viewed	as	an	essential	prerequisite	for	the	more	advanced	topics	of
Volume	II.	The	lower	(upper)	value	v(v)	of	the	game	is	the	supremum	(infimum)	over	priors	(decision	rules)	of	the	infimum	(supremum)	over	decision	rules	(priors)	of	the	Bayes	risk.	This	distribution	is	assumed	to	be	a	member	of	a	family	Pof	probability	distributions	on	R	n.	17.	Here	A	is	much	larger.	For	instance,	a	component	in	a	piece	of	equipment
either	works	or	does	not	work;	a	certain	location	either	contains	oil	or	does	not;	a	patient	either	has	a	certain	disease	or	does	not,	and	so	on.	E	A,	where	A	is	the	simplex	{>.	Let	X	be	the	number	of	failures	before	the	first	success	in	a	sequence	of	Bernoulli	trials	with	probability	of	success	9.	Chen,	S.	is	P.	3.4	3.4.1	UNBIASED	ESTIMATION	AND	RISK	I
NEQUALITIES	Unbiased	Estimation,	Survey	Sampling	In	the	previous	two	sections	we	have	considered	two	decision	theoretic	optimality	princi	ples,	Bayes	and	minimaxity,	for	which	it	is	possible	to	characterize	and,	in	many	cases,	compute	procedures	(in	particular	estimates)	that	are	best	in	the	class	of	all	procedures,	D,	according	to	these	criteria.	•
P(U(j)	:S:	Un+	l	:S:	U(k)	)	J	P(u	jc	:s:	Un+	l	:s:	v	I	u(j	)	=	u,	u(k)	=	v	)	dH	(	u	,	v	)	v	-	u	)	dH	(	u,	v	)	=	E	(U(k	J	)	-	E	(	UcJ	l	)	where	H	is	the	joint	distribution	of	U(j)	and	Uc	k)	·	By	Problem	B	.2.9,	E	(U(	i	)	)	=	thus,	P	(X(j)	:S:	Xn+l	:S:	X(k)	)	=	k-j	ij	(n	+	1	)	;	(4.	,	,	Y;m.	,	Xn,	eo	E	.	If	X11	•	.	,	Xn	denote	the	incomes	of	n	persons	chosen	at	random	from	a	certain
population.	Suppose	that	we	know	that	{31	Show	that,	for	suitable	a,	there	is	a	UMP	level	l::f	1	z;N;	>	k,	where	Pp�	[l::f	1	;;;N;	2:	k]	=	a.	Using	Examples	1.6.5	and	1.6.10,	we	see	that	the	distribution	of	{lj1	:	j	=	1,	.	Show	that	the	distributions	of	X	form	a	five-parameter	exponential	family	and	identify	'TJ,	B,	T,	and	h.	=	j_	·	·	·	j_	T(x)	[-p(x,	{)	8)	(3)	The
continuity	of	the	first	integral	ensures	that	{)	8(J	80	-=	·	·	0>.	The	density	of	Pe	may	be	written	as	11	p(x,O)	=	exp	["2	x	-	x2	2"2	=	2	{(!",	.:r	)	2	1	J12	-	2	(	"	2	+	log(2rr.:r	))],	which	corresponds	to	a	twO-parameter	exponential	family	with	and	'"	T	(x)	=	x,	'12(9)	=	2,	1	"	1	-	q	=	:	-	oo	.	BICKEL,	P.,	AND	E.	(b)	Deduce	that	x'	�	2	contingency	table	model	let
Xi	=	1	or	0	according	as	the	ith	individual	sampled	is	an	A	or	A	and	Yi	=	1	or	0	according	as	the	ith	individual	sampled	is	a	B	or	B.	(B.2.5)	l	488	Additional	Topics	In	Probability	and	Analysis	Appendix	8	j	'	'	'	B.2.1	Suppose	X	is	continuous	and	S	is	such	that	P(X	E	S)	=	1.	A	formulation	of	goodness	of	tests	specifies	that	a	test	is	best	if	the	maximum
probability	of	error	(of	either	type)	is	as	small	as	possible.	Our	hypothesis	is	then	the	null	hypothesis	that	the	new	drug	does	not	improve	on	the	old	drug.	We	next	give	a	useful	ineqpality	relating	product	moments	to	marginal	moments:	HOlder's	Inequality.	The	quantities	on	the	left	are	ca11ed	the	probabilities	of	coverage	and	(1	-	a)	is	called	a
confidence	level.	316	Asymptotic	Approximations	'	'	'	Chapter	5	Two	Sample;10000	Simulations:	Gaussian	Data:	Unequal	Variances;	2nd	sample	2x	bigger	-'--o.tzr-�������������-�--�����	�	---ci	i-	"	•	'	•	-,	i	'	,_,	•	'	'	'	'	'	•	>	�	•	'	'	'	0	{)8	ai	0.00	1	'	'	·'	•	u	u	�	¥:	0	"	'-"'	-	-	-	-f)	-	-	-	-	-	-	-£>-	-	0.02	""---...._,	...._,__	-	-	6K	,,	-	-	-	-	-o-	-	-	-	-	-	-(J-	-	-	-
+	-	-	-	-	-	-	-	0	-	-	+	0�-----��----�	0.5	--�1�----�	1.5	25	----�	2	'	Log10	(smaller	sample	size)	Figure	5.3.3.	Each	plotted	point	represents	the	results	of	IO,{X)()	two-sample	t	tests.	Here	we	are	using	F	to	represent	F	because	every	member	ofF	can	be	obtained	from	F.	1	,	.	Then	we	have	the	classical	Gaussian	linear	model,	which	we	can	write	in	vector
matrix	form,	(c)	where	Z	n	x	d	=	(	zf	,	.	In	a	modem	formulation,	if	there	were	n	dominant	offspring	(seeds),	the	natural	model	is	to	assume,	if	the	inheritance	ratio	can	be	arbitrary,	that	NAA.	and	variance	CT2,	then	the	drug	effect	is	measured	by	p.	(1.2.3)	p(x,	p(x	I	Because	we	now	think	of	B)	as	a	conditional	density	or	frequency	function	given	8	=
we	will	denote	it	by	0)	for	the	remainder	of	this	section.	1	.2	may	equivalently	be	written	p	A	=	L	eie[Ai	(B.	Another	application	is	to	the	disintegration	of	radioactive	material,	where	n	is	the	number	of	atoms,	and	observation	is	continued	until	r	a-particles	have	been	emitted.	Note	that	in	general	the	test	statistic	L	depends	intrinsically	on	ito,	JJ	1.
(2.3.7)	Note	that	c(ll)	E	c(8)	and	is	in	general	not	ij.	(3)	The	control	responses	are	normally	distributed,	Then	ifF	is	the	N(JJ>,	112	)	distribu	tion	and	G	is	the	N(J1	+	6.,	a-2)	distribution,	we	have	specified	the	Gaussian	two	sample	0	model	with	equal	variances.	I	1.	Is	it	unique?	9.	Begin	by	taking	a	fixed	number	no	and	calculate	X0	=	(	1/n0)	I:�"	1	X,
and	.	77,	733-74	1	(1990).	B.l.l	The	Discrete	Case	The	reader	is	already	familiar	with	the	notion	of	the	conditional	probability	of	an	event	A	given	that	another	event	B	has	occurred.	£[X	-	lt[i	=	E(X	-	I')J	Proof.	By	convention	this	is	chosen	to	be	the	type	I	error	and	that	in	;;	'	�,	•	,	:'	'.	For	a	proof,	see	Problem	8.9.1.	Hoeffding's	Inequality.	Title.	Often	the
outcome	of	the	experiment	is	used	to	decide	on	the	model	and	the	appropri	ate	measure	of	difference.	It	is	possible	to	generalize	the	notion	of	moments	to	random	vectors.	We	often	refer	to	such	X1	,	..	Hint:	Using	the	notation	of	Section	8.3,	for	r	even	E(Xr)	=	E(Qr)	=	k�rE(Zr)E(V-!r),	where	8.3.7.	I	'	10.	We	now	tum	to	the	prevalent	point	of	view	on
how	to	choose	c.	,	n,	t:o	0,	c	are	i.i.d.	N(O,	o-2	)	.	A.,	"Robust	Estimates	of	Location,"	Ann.	Inference	When	the	Number	of	Parameters	Is	Large.	�	Estimation.	Hint:	Use	the	factorization	theorem	(Theorem	1.5.1).	It	gives	careful	proofs	of	major	results	and	explains	how	the	theory	sheds	light	on	the	properties	of	practical	methods.	.1n.	Determine	the
smallest	value	k	=	k(a)	such	that	Jk(o)	has	level	a	for	H	1and	show	that	for	n	large,	k(a)	-	h(a),	where	(a)	Show	that	testing	H	h	(a)	C':	n(l	-	p)	+	Z1	-u	)np(!	-	p).	This	framework	is	natural	if,	as	is	often	the	case,	we	are	trying	to	get	a	yes	or	no	answer	to	important	questions	in	science,	medicine,	public	policy,	and	indeed	most	human	activities,	and	we
have	data	providing	some	evidence	one	way	or	the	other.	,	n,	generated	by	h(Y)	=	I	and	Yjl	•	.	HorXJES,	JR.,	1.	(a)	Express	mean	income	J.L	in	terms	of	8.	14.	=	Var	X	=	.\.	Let	k	be	a	positive	integer.	(I	-	9)'9,	k	�	0,	I,	2,	.	,	Xn	are	recorded.	2	Order	on	Symmetric	Matrices	520	B.!	0.3	Elementary	Hilbert	Space	Theory	521	B.l	l	Problems	and
Complements	524	8.12	Notes	53	8	B.13	References	539	••	CONTENTS	XII	C	TABLFS	Table	I	The	Standard	Normal	Distribution	541	542	Table	11	Auxilliary	Table	of	the	Standard	Normal	Distribution	543	Table	II	t	Distribution	Critical	Values	544	Table	Ill	x2	Distribution	Critical	Values	Table	IV	F	Distribution	Critical	Values	545	546	547	INDEX	I	l	'	'	'
PREFACE	TO	THE	SECOND	EDITION:	VOLUME	I	In	the	twenty-three	years	that	have	passed	since	the	first	edition	of	our	book	appeared	statistics	has	changed	enonnously	under	the	impact	of	several	forces:	(1)	The	generation	of	what	were	once	unusual	types	of	data	such	as	images,	trees	(phy	logenetic	and	other),	and	other	types	of	combinatorial
objects.	Treating	f	as	a	parameter,	show	that	the	order	statistics	X(t	)	•	.	(c)	There	is	an	interval	such	that	h(y	+	J)	(a,	b),	a	<	b,	such	that	for	every	y	E	(a,	b)	there	exists	a	J	>	0	-	h(y)	>	h(y)	-	h(y	-	J).	6.	We	can	proceed	as	follows.	7	425	Probtems	a	nd	Lornol;emEmts	·	or	dose	of	a	treatment,	and	a	response	variable	Y,	which	is	yield	or	production.	Hint:
If	[x[1	�	L;:�	l	[xj	[,	x	�	(x	1	,	.	Of	course,	model	(a)	assumes	much	more	but	it	may	be	a	reasonable	first	approximation	in	these	situations.	We	consider	intervals	based	on	observable	random	variables	that	contain	an	un	observable	random	variable	with	probability	at	least	(	1	-	a).	The	particular	angle	of	mathematical	statistics	is	to	view	data	as	the
outcome	of	a	random	experiment	that	we	model	mathemati	cally.	ln	that	case,	if	0	<	a	<	1,	there	exists	a	unique	smallest	c	for	which	a:	(c)	<	a.	Von	Neumann's	Theorem	states	that	if	e	and	D	are	both	finite,	then	the	game	of	S	versus	N	has	a	value	v,	there	is	a	least	favorable	prior	n"	and	a	minimax	rule	§*	such	that	J*	is	the	Bayes	rule	for	n*	and	rr*
maximizes	the	Bayes	risk	of	J*	over	all	priors.	a2	)	,	where	a2	is	the	variance	of	t:.	We	might,	for	each	of	a	group	of	n	randomly	selected	patients,	record	sleeping	time	without	the	drug	(or	after	the	adminis	tration	of	a	placebo)	and	then	after	some	time	administer	the	drug	and	record	sleeping	time	again.	If	p	�	0,	{So}	is	a	family	of	concentric	circles.
e,,	462	N(p,	E),	analysis	of	variance	(ANOVA),	367	..,	multivariate	normal	distribu	tion,	507	antisymmetric,	207,	209	asymptotic	distribution	I	of	quadratic	forms,	5	0	asymptotic	efficiency,	331	of	Bayes	estimate,	342	ofMLE,	3	3	1	,	386	asymptotic	equivalence	of	MLE	and	Bayes	estimate,	342	asymptotic	normality,	3	1	1	of	M-estimate,	estimating
equation	estimate,	330	N(JJ,	u2	),	normal	distribution	With	mean	JJ	and	variance	u2	,	464	N(JJt,	j.t2,	uf,	u�	,	p),	bivariate	normal	dis	of	MLE.	The	p-value	is	a(t,	B)	=	Po	(T	>	t)	=	1	-	Fo(t).	0	By	a	standard	argument	it	follows	that,	1j(r)	�	1].	1	8.10.3	Elementary	Hilbert	Space	Theory	A	linear	space	1i	over	the	reals	is	a	Hilbert	space	iff	(i)	It	is	endowed
with	au	inner	product	(	)	:	1l	x	1l	�	R	such	that	(	)	is	bilinear,	·,	·	·	,	·	(ah1	+	bh2,	ch3	+	dh4)	=	ab(h1,	h2)	+	ac(h1	,	hg)	+	be(	h2,	hg)	+	bd(h2,	h4),	symmetric,	(h1,	h2)	=	(h2,	hi),	and	(h,	h)	>	0	with	equality	iff	h	=	0.	It	follows	that,	when	=	that	given	is	conditionally	distributed	as	Y)	where	is	uniform	on	whatever	be	D	Thus,	is	sufficient.	Test	in	both
cases	whether	the	events	[being	a	man]	and	[being	admitted]	are	independent.	'	Peter	J.	Conventions:	(i)	In	order	to	minimize	the	number	of	footnotes	we	have	added	a	section	of	comments	at	the	end	of	each	chapter	preceding	the	problem	section.	Consider	the	following	algorithm	under	the	conditions	of	Theorem	2.4.2.	Define	Tj0	as	before.	Show	that
8	�	depends	on	X	through	T(X)	only	provided	that	8	is	unique.	(b)	Find	the	maximum	likelihood	estimate	of	Pe	[X1	>	t]	for	t	>	11·	Hint:	You	may	use	Problem	2.2.	16(b	).	We	next	compute	the	limiting	distribution	of	.,fii	(Bn	-	B).	i	I	=	1	Y)	+	Z2.	Although	we	believe	the	material	of	Chapters	5	and	6	has	now	become	fundamental,	there	is	clearly	much
that	could	be	omitted	at	a	first	reading	that	we	also	star.	Thus,	the	receiver	wants	to	discriminate	and	may	be	able	to	attach	monetary	costs	to	making	a	mistake	of	either	type:	"keeping	the	bad	shipment"	or	"returning	a	good	shipment."	In	testing	problems	we,	at	a	first	cut,	state	which	is	supported	by	the	data:	"specialness"	or,	as	it's	usually	called,
"hypothesis"	or	"nonspecialness"	(or	alternative).	lt	may	be	shown	that	11	is	characterized	by	the	property	h	-	11(h	I	C)	h'	for	all	h'	E	C.	L6HMANN,	E.	New	York:	Springer,	1998.	•	•	I	ifT(x)	>	t	6t	(x	)	0	if	T(x)	<	t	'	•	'	'	_	(4.3.3)	with	61(x)	any	value	in	(0,	1)	if	T(x)	=	t.	(ii)	If	we	denote	the	corresponding	(posterior)	frequency	function	or	density	by	rr(9	I
x),	then	rr(8	1	x)	rr(O)p(x	I	8)	L.;,	rr(t)p(x	I	t)	rr(8)p(x	1	8)	roo	rr(t)p(x	1	t)dt	if	if	8	is	discrete,	8	is	continuous.	Then	we	can	choose	r	and	s	in	the	fj(r,	s)	distribution,	so	that	the	mean	is	r/(r	+	s)	=	0.05	and	its	variance	is	very	small.	Hint:	P(T	<	to	I	To	=	to)	is	1	minus	the	power	of	a	test	with	critical	value	to	.	We	want	to	find	a	function	g	defined	on	the
range	of	Z	such	that	g(Z)	(the	predictor)	is	"close"	to	Y.	�,	then	the	probability	of	exceeding	the	threshold	(type	I)	error	is	smaller	No	one	really	believes	that	H	is	true	and	possible	types	of	alternatives	are	vaguely	known	at	best,	but	computation	under	H	is	easy.	-	-	8old	-	BMOM	D	The	Newton-Raphson	algorithm	has	the	property	that	for	large	n,
Tinew	after	only	one	step	behaves	approximately	like	the	MLE.	Let	Hint:	(a):	See	Problem	B.4.4.	(b):	Let	A	be	an	orthogonal	matrix	whose	first	row	is	(n-	i	,	.	If	N8	is	the	number	of	defective	items	in	the	population	sampled,	then	by	(A.I3.6)	.	Yu,	"Model	Selection	and	the	Principle	of	Mimimum	Description	Length,"	J.	X	has	a	!3(	0)	distribution,	then	n,
E(X)	�	nO	Var	X	�	nO(!	-	0).	That	is,	either	NAA	cannot	really	be	thought	of	as	stochastic	or	any	stochastic	I.	·	·	•.	Show	that	X	+	Y	and	X	-	Y	are	independent,	if	and	only	if,	crf	4.	Go	to	(1).	Hooo,	R.,	"Adaptive	Robust	Procedures,"	J.	Pyke's	careful	reading	of	a	next-to-final	version	caught	a	number	of	infelicities	of	style	and	content	Many	careless
mistakes	and	typographical	errors	in	an	earlier	version	were	caught	by	D.	Show	that	N,	P[Z	�	z	Iy	�	y[	(	N	-	n	)	w-Y(J	-	B)N-n-(,-y)	�	z-y	(i.e.,	the	binomial	probability	of	successes	in	Hint:	P[Z	�	z	I	Y	�	y)	where	b(y)	�	L	'	Y	has	a	�	N	-	n	trials).	1	.6.)	It	follows	that	Fisher's	method	for	cgmbining	p-values	(see	4.1.6)	is	UMP	for	testing	that	the	p-values
are	uniformly	distributed	against	F(u)	=	u8,	0	<	B	<	l	.	Show	that	..	,	Xn	is	a	sample	from	a	N(B,	a2)	population,	where	a2	is	known.	Given	X	=	k,	Y	has	a	binomial	B(k,p)	distribution.	We	want	a	prediction	interval	for	Y	=	Xn+	l	"'	F,	where	Xn+	l	is	independent	of	the	data	X1	,	,	Xn	.	Note	that	in	the	health	versus	smoking	context,	we	can	think	of	E(Y	I	Z
=	z)	as	the	mean	health	rating	0	for	people	who	smoke	z	cigarettes	a	day.	D	generally	except	in	the	Gaussian	case.	Suppose	Y	and	Z	have	joint	density	function	p(	z,	y)	=	z	+	y	for	0	<	z	<	1,	0	<	y	<	1	.	This	loss	expresses	the	notion	that	all	errors	within	the	limits	±d	are	tolerable	and	outside	these	limits	equally	intolerable.	FELLER,	W.,	An
Introduction	to	Probability	Theory	and	Its	Applications,	Vol.	132	2.4.3	Methods	of	Estimation	Chapter	2	The	Newton-Raphson	Algorithm	An	algorithm	that,	in	general,	can	be	shown	to	be	faster	than	coordinate	ascent,	when	it	converges,	is	the	Newton-Raphson	method.	•	,	Xn	is	a	sample	from	a	Poisson	P(O)	population.	The	claims	(iii)	and	(iv)	are	left
as	exercises.	For	instance,	a	statistic	we	shall	study	extensively	in	Chapter	�	function	valued	statistic	F.	whereas	the	situation	is	reversed	if	the	sample	size	inequalities	and	variance	inequalities	agree.	On	the	other	hand,	if	f-1	1	<	f-Lo	,	the	MP	level	a	test	.(x)	=	p(x,	�	/p(x,	00	)	.	(b)	If	x	=	(	c,	y)	is	proportional	to	a	normal	density	as	a	function	of	y.
Note	(1	-	a)	uniformly	most	accurate	level	(	1	-	a)	UCB	for	-8.	,	tr	t	.	Then	we	would	and	we	want	One-Sided	Tests	The	two-sided	formulation	is	natural	if	two	treatments,	A	and	B,	ate	considered	to	be	equal	before	the	experiment	is	performed.	Let	(X,,	.	1	0)	,	!0	>	.I""	)	("'	o.""	�	J""	w""o�	(o"''	9)	(	1	.2.5)	0.001.	H	,	and	Hs	are	Hermite	polyno	3	mials
defined	by	H2	(x)	�	x2	-	1,	H	(x)	3	�	x3	-	3x,	Hs(x)	�	x5	-	10x3	+	15x.	Variation	in	the	population	is	modeled	on	the	log	scale	by	using	the	model	,	log	Y;	�	log	a	-	15	!og{	l	+	exp[-fJ(t	;	-	p)/15]}	+	r;	where	€1,	.	(a)	What	is	the	distribution	of	(Nt,	.	(b)	The	quantile	sign	test	Ok	of	H	versus	K	has	critical	region	{x	:	L.:�	1	[Xi	>	OJ	>	k	)	.	Does	a	new
marketing	policy	increase	market	share?	1	.3	the	questions	are	sometimes	simple	and	the	type	of	data	to	be	gathered	under	our	control.	Let	As	usual	let	Xt,	.	Suppose	X	=	(X,,	.	Hint:	13.	The	log	likelihood	of	1r	(	1r1	,	,	7rk	)	T	based	on	X	(XI	,	.	On	the	other	hand,	{	r(X	I	s,	Bnew	)	-	Eoold	log	r(X	I	s	,	B	)	I	S(X)	=	s	old	by	Shannon's	ineqnality,	Lemma
2.2.1.	}	>0	(2.4.17)	D	The	most	important	and	revea1ing	special	case	of	this	lemma	follows.	We	observe	(z1,	Y1),.	Using	our	discussion	given	+	=	in	Section	B.	Maximum	likelihood	and	dimensionality	calcu	lations	similar	to	those	for	the	2	X	2	table	show	that	Pearson's	x2	for	the	hypothesis	of	independence	is	given	by	(6.4.9)	which	has	approximately	a
x(a-	I	)	(b-l)	distribution	under	H.	j=	l	16.	N(t	+	h)	l	-	N(t)	is	independent	of	N(s)	for	all	s	<	t,	h	>	0,	and	has	a	P(:lh)	distribution.	Then	{	'lj	)	has	a	subsequence	that	converges	to	a	point	71°	E	[.	The	problem	of	selecting	good	decision	procedures	has	been	attacked	in	a	variety	of	ways.	In	the	model	of	Problem	5(a)	compute	the	MLE	(Ot	,	02	)	under	the
model	and	show	that	(a)	If	01	>	0,	e,	>	0,	C(	y'n(B1	-	01	,	ii,	-	O,))	�	.N"(O,	0,	1,	1,	0).	,	Xn	are	i.i.d.	as	X	with	X	F,	where",.._,"	stands	for"is	distributed	as."	The	model	is	fully	described	by	the	set	F	of	distributions	that	we	specify.	This	phenomenon	is	not	restricted	to	the	Gaussian	case	as	the	next	example	illustrates.	It	is	important	to	remember	that
these	are	assumptions	at	best	only	approximately	valid.	We	establish	analogues	of	the	information	inequality	and	use	them	to	show	that	under	suitable	conditions	the	MLE	is	asymptotically	optimal.	Suppose,	moreover,	that	X	has	density	or	frequency	function	p(x	I	8)	for	each	0.	Show	that	{	Xk	t	,	.	I	we	see	that	given	=	t,	the	conditional	distribution	of
+	are	the	same	and	we	can	conclude	and	that	of	+	=	t,	has	a	U(O,	t)	distribution.	Example	3.3.4.	Minimax	Estimation	in	a	Nonparametric	Setting	(after	Lehmann).	To	simplify	the	rule	further	we	use	the	following	equation,	which	can	be	established	by	expanding	both	sides.	His	or	her	measurements	are	subject	to	random	fluctuations	(error)	and	the
data	can	be	thought	of	as	p,	plus	some	random	errors.	If	S(x)	is	a	level	(	1	-	a)	con·	E	S(:r)	=	v0	when	vo	Chapter	4	is	a	level	a:	test.	The	connection	is	through	the	concept	of	entropy,	which	also	plays	a	key	role	in	information	theory-see	Cover	and	Thomas	(	1991	).	However,	Chapter	1	now	has	become	part	of	a	larger	Appendix	B,	which	includes	more
advanced	Volume	topics	from	probability	theory	such	as	the	multivariate	Gaussian	distribution,	weak	con	vergence	in	Euclidean	spaces,	and	probability	inequalities	as	well	as	more	advanced	topics	in	matrix	theory	and	analysis.	,	vd)	=	(qt(ll),	.	The	data	is	a	point	X	x	in	the	outcome	or	sample	space	X.	Such	restrictions	are	natural	if,	for	instance,	we
test	the	efficacy	of	a	treatment	on	the	basis	of	two	correlated	responses	per	individual.	8�2))	showing	that	its	leading	(iii)	Reparametrize	as	in	Theorem	6.3.2	and	compute	Wn	(	term	is	the	same	as	that	obtained	in	the	proof	of	Theorem	6.3.2	for	2	log),(X).	discrete	case	and	is	satisfied	by	any	function	of	interest	when	Sets	B	that	are	members	of	Bk	are
called	measurable.	,	N.	(b)	Compute	EY	=	3.	This	is	not	the	same	as	our	previous	hypothesis	unless	all	departments	have	the	same	number	of	applicants	or	all	have	the	same	admission	rate,	I'	.	see	Chung	(	1	974,	p.	BILLINGSLEY,	P.,	Probabiliry	and	Measure,	3rd	ed.	(b)	The	gamma	family.	(b)	If	n	>	5	and	/1-I	and	/1-2	are	unknown,	show	that	the
estimates	of	fl-1,	/1-2,	a?,	a�,	p	coincide	with	the	method	of	moments	estimates	of	Problem	2.1	.8.	(iii)	ll	is	idempotent,	D2	=	IT.	The	closed	fonn	here	is	deceptive	because	inversion	of	a	d	x	d	matrix	takes	on	the	order	of	d3	operations	when	done	in	the	usual	way	and	can	be	numerically	unstable.	EM	for	bivariate	data.	,	N4)	has	a	M	(n,	fh	,	.	The	idea	of
robustness	is	that	we	want	estimation	(or	testing)	procedures	to	perform	reasonably	even	when	the	model	assumptions	under	which	they	were	designed	to	perform	excellently	are	not	exactly	satisfied.	,	Xn)	Example	1.5.1.	A	machine	produces	n	items	in	succession.	The	design	of	the	experiment	may	not	be	under	our	control,	what	is	an	appropriate
stochastic	model	for	the	data	may	be	questionable,	and	what	80	and	81	correspond	to	in	terms	of	the	stochastic	model	may	be	unclear.	l'l	Example	5.4.2.	Hodges's	Example.	Ranking.	Moreover,	the	statistical	procedure	can	be	designed	so	that	the	experimenter	stops	experimenting	as	soon	as	he	or	she	has	significant	evidence	to	the	effect	that	one
drug	is	better	than	the	other.	Stratified	Sampling.	However,	X(k)	does	have	the	advantage	that	we	don't	have	to	know	a	or	even	the	shape	of	the	density	f	of	Xi	to	apply	it.	For	instance,	if	in	the	binary	data	regression	model	of	Section	6.4.3,	we	take	g	(	J-L)	cp	-	1	(J-L)	so	that	=	'lri	=	:(Y)	defined	in	Remark	6	.	Example	2.3.5.	Location-Scale	Regression.
The	notions	of	parametrization	and	identifiability	are	introduced.	Express	the	Cramer-von	Mises	statistic	as	a	sum.	(5.4.20)	In	what	follows	we	let	P,	rather	than	Pe,	denote	the	distribution	of	Xi.	This	is	because,	as	pointed	out	later	in	Remark	5.4.3,	under	regularity	conditions	the	properties	developed	in	this	section	are	valid	for	P	�	{	Pe	:	0	E	8}.	:	(32
<	!38	in	this	(c)	By	conditioning	on	L�	1	Xi	and	using	the	approach	of	Problem	6.4.5	construct	an	exact	test	(level	independent	of	f3t)·	�'	'	.	L	I	•	'	·------------------------	I	j	Section	3.6	Problems	and	Complements	199	>.(±E-)	=	0	implies	that	r	satisfies	where	0	<	r	<	1	.	0=	n	Our	discussion	can	be	generalized.	Finally,	we	select	topics	from	xvii	xviii	Preface
to	the	First	Edition	Chapter	8	on	discrete	data	and	Chapter	9	on	nonpararnetric	models.	This	gives	,I	where	I	I'±(X)	=	X	±	o-z	(1	-	�a)j	.,fn.	When	w	is	the	outcome	of	the	experiment,	�(w)	is	referred	to	as	the	observations	or	data.	(Prove	or	disprove.	Testing	In	analogy	with	Section	6.1,	we	let	w	=	{	11	:	rJi	=	zT	{3,	{3	E	RP}	and	let	r	be	the	dimension
of	w.	Without	Winston	Chow's	lovely	plots	Section	9.6	would	probably	not	have	been	written	and	without	Julia	Rubalcava's	impeccable	typing	and	tolerance	this	text	would	never	have	seen	the	light	of	day.	Var	X	=	a	.	Show	that	if	cr1cr2	=	u�.	However,	it	is	intuitively	clear	that	if	we	are	interested	in	the	proportion	0	of	defective	items	nothing	is	lost
in	this	situation	by	recording	and	using	only	T.	SMITH,	Bayesian	Theory	New	York:	Wiley,	1994.	,	Xn)	is	given	by	'	-	Divide	top	and	bottom	of	(5	.5.10)	by	II7	1	p(X;,	B)	to	obtain	(5.5.1	1	)	where	l(x,B	)	=	logp(x,B	)	and	.	For	further	dis	cussion	of	this	generalization	see	McCullagp.	,	0.9	+	0)	(d)	The	N(O,	02)	family,	0	>	0	(e)	p(	x,	O	)	=	2(x	+	0)/(1	+	20),	0
<	x	<	I,	0	>	0	(f)	p(x,	9)	is	the	conditional	frequency	function	of	a	binomial,	B(n,	0),	variable	X,	given	that	X	>	0.	The	risk	points	(R(B1	,	6,),	R(B,,	6,)	)	i	,	1.3.3	Chapter	1	=	1	,	.	Consider	a	covariate	x	,	which	is	the	amount	Section	6.	for	B.10.2.2	The	Generalized	Cauchy-Schwarz	Inequality	E	n	E12	be	spd,	(p	+	q)	x	(p+	q),	with	En.P	x	p,	,,	q	x	q.	so	that	t)
�	.u/	+	(1	-	>.JaN((!	=	�	or	a1	=	independent	samples	-	>.)a/	+	.\a�)]:).	Note	that	in	the	case	of	intervals	this	is	just	inf{	P(!c(X)	<	v	<	v(X)	,	P	E	P]}	(i.e.,	the	minimum	probability	of	coverage).	Second	Edition	Mathematical	Statistics	Basic	Ideas	and	Selected	Topics	Volume	I	Peter	J.	18.	X11)	,	Xi.	(X(I)··	.	(6.5.8)	This	is	not	unconditionally	an
exponential	family	in	view	of	the	A0	(	z	f{3)	term.	l	)	where	p	and	pz	are	the	frequency	functions	of	(Y,	Z)	and	Z.	4th	ed.	•	•	,	/3d	)T	of	un	knowns.	,	Xn	be	the	n	determinations	of	a	physical	constant	J.t.	Consider	the	model	where	xi	=	J.t	+	ei,	i	and	assume	ei	=	l,	.	(2)	Claims	(5.5.8)	and	(5.5.9)	hold	with	a.s.	replaced	by	in	Po	probability	if	A4	and	A5	are
used	rather	than	their	strong	forms-see	Problem	5.5.	7.	Properties	(i)-(iii),	of	II	above	are	immediate.	,	1/n).	So	is	Example	1.1.2	with	assumptions	(1)-{4).	Construct	an	exponential	family	of	rank	k	for	which	£	is	not	open	and	A	is	not	defined	on	all	of	t:.	+	(x	�)l	�	0	(5.5.9)	i	'	'	340	Asymptotic	Approximations	Chapt	er	5	Remarks	(	I	)	Statements	(5.5.4)
and	(5.5.7)-(5.5.9)	are,	in	fact,	frequentist	statements	about	the	asymptotic	behavior	of	certain	function-valued	statistics.	For	instance,	the	Hardy-Weinberg	parameter	(}	has	a	clear	biological	interpretation	and	is	the	parameter	for	the	experiment	described	in	Example	2.1.4.	Similarly,	economists	often	work	with	median	housing	prices,	that	is,	the
parameter	v	that	has	half	of	the	population	prices	on	either	side	(formally,	v	is	any	value	such	that	P(X	<	v)	>	�.	Suppose	our	primary	interest	in	an	estimation	type	of	problem	is	to	give	an	upper	bound	for	the	param	eter	v.	Gray,	U.	See	also	Problem	2.4.7.	The	coordinate	ascent	algorithm	can	be	slow	if	the	contours	in	Figure	2.4.1	are	not	close	to
sphericaL	It	can	be	speeded	up	at	the	cost	of	further	computation	by	Newton's	method,	which	we	now	sketch.	The	improvement	in	speed	may	however	be	spurious	since	A	-l	is	costly	to	compute	if	d	is	large-though	the	same	trick	as	in	computing	least	squares	estimates	can	be	used.	'	I	I	I.	For	instance,	R(B�o	o,)	-	0(0.3)	+	10(0.7)	=	7	-	12(0.6)	+	1	(0.4)
=	7.6.	If	8	is	finite	and	has	k	members,	we	can	represent	the	whole	risk	function	of	a	procedure	0	by	a	point	in	k-dimensional	Euclidean	space,	(R(01,	8),	.	A	linear	subspace	£	of	H	is	closed	iff	hn	E	l	for	all	n,	hn	--+	h	h	E	C.	,	Bk	vary	freely,	or	Bi	=	Bio	(known)	i	=	1,	.	Such	densities	will	be	considered	further	in	Section	Upon	combining	(B,22)	and	(B,23)
we	see	that	for	y	E	g(S)	,	py	(y	)	If	o	B.4.	X	is	a	random	variable	(k	=	=	1),	Px(	g	-	1	(Y	)	)	'	JJ.	(1	.53)	By	(B.Ll)	and	(152),	for	O	E	S;,	Po[X	=	x;IT	=	I;]	P8[X	=	x;	,	T	=	t;]	/P8(T	=	1;)	p(x;	,	B)	Po[T	=	I;]	g(t;,	O)h(x;)	if	T(x;)	=	t;	Po	[T	=	t;J	(L5.4)	0	if	T(x;)	-F	t,.	Finally,	the	basic	property	making	Theorem	2.3.1	work,	strict	concavity,	is	isolated	and	shown	to
apply	to	a	broader	class	of	models.	9	Likelihood	Ratio	Proced	u	res	259	a5	gives	the	maximum	of	p(x,	B)	log	.\(x)	,	which	thus	equals	By	Theorem	2.3.	1	,	equivalent	to	�	log	.\(x)	l	og	p(x,	B)	-	for	B	E	80	.	I.	These	results	lead	to	a	necessary	condition	for	existence	of	the	MLE	in	curved	exponential	families	but	without	a	guarantee	of	unicity	or	sufficiency.
If	X1	.	E(Y,'	Yi)	where	=	=	(Yi	,	f2)T	=	(eu\eu2)T	9.	,	yp),	a9	a9	(xo,Yo)	=	0,	{)	(xo	,	Yo)	=	aYj	Xi	200	Measures	of	Performance	Chapter	3	and	for	all	l	<	i,	a	,	b	0	0,	(	o,	Yo	)	<	aXaaXb	a	YcaYd	1	<	j,c,	d	<	p.	11	Var	i=	I	Var	0	!1	(B)	is	often	referred	to	as	the	information	contained	in	one	observation.	80)	or	Problem	B.9.3.	'	Section	8.10	Topics	in	Matrix
Theory	and	Elementary	Hilbert	Space	Theory	We	conclude	with	bounds	for	tails	of	distributions.	Evidently,	there	is	a	substantial	overlap	between	the	two	classes	of	estimates.	We	want	to	estimate	8.	1	0.3	by	taking	.!	C	�	P	diag(>-1	,	.	Thus,	the	:	f1	S	f,Lo	versus	K	:	f1	>	fio	(with	fio	=	0)	is	suggested.	Consider	the	Hardy-Weinberg	model	with	the	six
genotypes	given	in	Problem	2.1.15.	These	techniques	often	have	a	strong	intrinsic	computational	component.	J.,	"Using	Residuals	Robustly	6,	266--291	(1978).	PORT,	AND	C.	Thus,	log	A(x)	and	�	(nl2)	log(!	+	r;l(n	-	!))	for	Tn	>	0,	where	Tn	is	the	statistic.	the	Wald	and	Rao	statistics	and	associated	confidence	regions,	and	some	parailels	to	the	opti‐
mality	theory	and	comparisons	of	Bayes	and	frequentist	procedures	given	in	the	univariate	case	in	Chapter	5.	See	Problem	3.5.13.	S)	=	This	minimum	distance	principle	is	essentially	what	underlies	p	=	P[AA],	N�,	is	the	MLE	of	p	and	d	(	N�A	,	60)	=	I	N�A	-	!	I-	In	Example	4.1.3,	�	estimates	O	andd	(	�	,	00)	=	(	�	-	Oo)	+	where	Y+	=	y	I	(y	>	0).
Goals,	and	Performance	Criteria	R(B2,6,)	I	10	.7	•	3	.4	5	.	Thus,	the	MLE	of	w	is	by	definition	(b)	Let	1'	=	{Po	:	WMLE	=	arg	sup	sup{Lx(O)	:	9	E	8(w)}.	does	not	depend	on	x.	l	Section	6.7	8.	Assoc.,	69,	909-927	(1	974).	Now	use	Problem	B.2.4.	11.	,	X(n1	),	where	X(,	1	=	(X(i)	-	X)ju,	is	"irrel	evant"	(ancillary)	for	(J.L,	a2	).	(J.J.l)	if	max(n-	N(l-	8),	0)	<	k	<
min(N8,	n)	.	L.,	A	Course	in	Probability	Theory	New	York:	Academic	Press,	1974.	J	B2	With	.,jii(B1	-	B)	�	N(O,	cr]).	LoEvE,	M.,	Probability	Theory,	Vol.	,	m}	is	a	2n-parameter	canonical	exponential	family	with	'lJi	=	Jti/al,	1Jn+i	=	-1	/2af,	i	=	1,	.	The	0	-1	nature	makes	it	resemble	a	testing	loss	function	and,	as	we	shall	see	in	Chapter	4,	the	connection	is
close.	Using	our	first	three	examples	for	illustrative	purposes.	T(X)	.,P(B).	,	n	+	1	,	then,	b	y	Problem	B	.2	.	Thus,	6,	equals	the	likelihood	ratio	test	Bo,	in	fact.	(3)	Theorem	5.4.5.	Suppose	the	conditions	of	Theorem	5.4.2	and	(5.4.40)	hold	uniformly	for	fJ	in	a	neighborhood	of	Oo.	That	is,	assume	sup{IP,[fol(Bj(Bn	-	8)	S	z]	-	(1	-	of?(z))[	:	[8	8o	[	<	0,	n	p	(xi
,	eo	+	Jn)	>	dn	(a,eo)	<	Pe,	+	)n	I;	log	p(X	e0	)	i=l	1,	-l-	en	(a,	eo)]	of	Theorems	5.4.4	and	5.4.5	in	the	future	will	be	referred	to	as	a	Wald	test.	Let	T	=	X,	of	testing	H	:	fL	=	fLO	when	X1	,	then	C	=	{	(	,	p	:	[t	-	p[	S	I	,	�,	''i	•	·!	k(B,a)	is	nondecreasing	in	B.	<	A	0	.	P	(	�	82	)	and	fm	is	the	=	••	;	,	=	�	P	(R	=	i)j,i+I(Y)	't=l	x�	density.	Conditional
Distributions	B.7	Convergence	for	Random	Vectors:	0p	and	ap	Notation	511	B.8	Multivariate	Calculus	516	B.9	518	Convexity	and	Inequalities	B.IO	Topics	in	Matrix	Theory	and	Elementary	Hilbert	Space	Theory	519	B.IO.I	Symmetric	Matrices	519	B.l0.	A	government	expert	wants	to	predict	the	amount	of	heating	oil	needed	next	winter.	,	p.	'	•	"	•	.
(3.4.4).	is	1	-	a.	Suppose	e	=	{	80,	Bl),	A	=	{0,	I},	and	that	the	model	is	regular.	We	usually	try	to	combine	parameters	of	interest	and	nuisance	parameters	into	a	single	grand	parameter	(),	which	indexes	the	family	P,	that	is,	make	B	-----+	Po	into	a	parametrization	of	P.	Suppose	that	h	is	a	one-toone	function	from	8	onto	h(8).	Establish	(B.S.IO)	and
(B.S.	II).	For	detailed	discussion	we	refer	to	Little	and	Rubin	(1987)	and	MacLachlan	and	Krishnan	(1997).	'	Example	4.3.7.	Testing	Precision	Continued.	These	objects	that	are	the	building	blocks	of	most	modem	models	require	concepts	involving	moments	of	random	vectors	and	convexity	that	are	given	in	Appendix	B.	Gupta,	P.	Example	3.4.1.
Unbiased	Estimates	in	Survey	Sampling.	•	9,	We	are	given	a	regular	model	with	9	finite.	l	1	I	i	'	Section	4.1	217	Introduction	There	is	an	important	class	of	situations	in	which	the	Neyman	Pearson	framework	is	inappropriate,	such	as	the	quality	control	Example	1.1.1.	Indeed,	it	is	too	limited	in	any	situation	in	which,	even	though	there	are	just	two
actions,	we	can	attach,	even	nominally,	numbers	to	the	two	losses	that	are	not	equal	and/or	depend	on	0.	To	test	whether	the	new	treatment	is	beneficial	we	test	H	:	�	<	1	versus	K	:	.6.	As	in	Example	4.4.	1	,	let	X1	,	.	(4.5.2)	These	tests	correspond	to	different	hypotheses,	O{X,	J.lo	)	being	of	size	pothesis	H	:	Jl	=	flo-	a	only	for	the	hy	Conversely,	by
starting	with	the	test	(4.5.2)	we	obtain	the	confidence	interval	(4.5.1)	by	finding	the	set	of	J1	where	J(X,	Jl)	�	0.	INTRODUCTION	AND	EXAMPLES	Tests	of	Goodness	of	Fit	and	the	Brownian	BridgeTesting	Goodness	of	Fit	to	Parametric	Hypotheses	Regular	Parameters.	See	Problem	1.1.8.	On	the	basis	of	subject	matter	knowledge	and/or	convenience	it
is	usually	postulated	that	(2)	I'	(z)	�	g((3,	z)	where	g	is	known	except	for	a	vector	(3	�	((31	,	.	-	-	19.	It	has	the	advantage	that	there	is	no	trimming	proportion	a	that	needs	to	be	subjectively	specified.	-	p.0.	Show	that	EPV(8)	=	if!(	-.Jii8/	..;2"	)	,	where	if!	denotes	the	standard	normal	distribution.	,	k,	contains	an	open	!.	or	density	function.	In	this
framework	R(B,	J)	is	just	E[I(O,	J(X))	I	(}	8],	the	expected	loss,	if	we	use	ea-;ier	to	analyze	than	admissibility.	Consider	a	population	with	()	mem	bers	labeled	consecutively	from	I	to	B.	Use	(A.2.7)	.	Volume	I	presents	fundamental,	classical	statistical	concepts	at	the	doctorate	level	without	using	measure	theory.	New	York:	J.	DOKSUM,	"Empirical	Bayes
Procedures	for	a	Change	Point	Problem	with	Application	to	HIV/AIDS	Data,"	Empirical	Bayes	and	Likelihood	Inference,	67-79,	Editors:	S.	Using	a	pivot	based	on	Er	1	(Xi	-	X)2•	(a)	Show	how	to	construct	level	{1	-	a)	confidence	intervals	of	fixed	finite	length	for	unknown	variance	log	a2•	1	(X;	-	X)	2	�	16.52,	n	�	a)	UCB	for	u2?	A	gambler	observing	a
game	in	which	a	single	die	is	tossed	repeatedly	gets	the	impres	sion	that	6	comes	up	about	18%	of	the	time,	5	about	14%	of	the	time,	whereas	the	other	,	I	i	!	,	'	j	•	I	l	j	'	1	i	I	1	i	•	I	!	I	1	�:--	:_:::_:��-=c==-==-==='---Section	4.10	273	Problems	and	Complements	·	-	-	four	numbers	are	equally	likely	to	occur	(i.e.,	with	probability	.17).	For	in	stance,
suppose	we	want	to	see	if	a	drug	induces	sleep.	Find	a	statistic	T(X,	Y)	and	a	critical	value	c	such	that	if	we	use	the	classification	rule,	(X,	Y)	belongs	to	population	1	if	T	>	c,	and	to	population	0	ifT	<	c,	then	the	maximum	of	the	two	probabilities	ofmisclassification	Po	[T	>	c],	P!(T	<	c]	is	as	small	as	possible.	(8.9.5)	That	is,	the	probability	that	Sn
exceeds	its	expected	value	np	by	more	than	a	multiple	nc	of	n	tends	to	zero	exponentially	fast	as	n	OCI.	98	for	f)	20.	SAMAROV,	"Nonparametric	Estimation	of	Global	Functionals	and	a	Measure	of	the	Explanatory	Power	of	Covariates	in	Regression,''	Ann.	In	fact,	even	in	the	classical	�	regression	model	with	design	matrix	ZD	of	full	rank	the	formula
(2.	Under	conditions	AO-A6	for	(a)	and	A0-A6	with	A6	for	i!�'l	for	(b)	establish	that	(a)	[-�D2	ln(8n)]-l	is	a	consistent	estimate	of	J-	1	(0o	).	A	=	{{1,	2,3),	(1,3,	2),	{2,	1,	3),	(2,	3,	1	),	{3,	1	,2),	(3,	2	,	!)	}	.	Using	0	means	that	if	X	=	x	is	observed,	the	statistician	takes	action	o(x)	.	(ii)	The	distribution	of	the	number	of	occurrences	of	the	"event"	depends
only	on	the	length	of	the	time	for	which	we	observe	the	process.	,	B)	-	p(X;,	Bo)}	:	B	E	K	n	{I	:	18	-	Bol	>	.\	.	HUBER,	P.,	Robust	Statistics	New	York:	Wiley,	l981.	as	a	test	statistic	.	The	test	we	derive	will	still	have	desirable	properties	in	an	approximate	sense	to	be	discussed	in	Chapter	if	the	normality	as	sumption	is	not	satisfied.	,	Tk	and	h(x)	=	II�	1
1	[xi	E	{	1,	.	n	(A.l5.7)	470	A	Review	of	Basic	Probability	Theory	Upon	taking	the	Xi	to	Appendix	A	be	indicators	of	binomial	trials,	we	obtain	(A.	As	a	consequence	the	emphasis	of	statistical	theory	has	shifted	away	from	the	small	sample	optimality	results	that	were	a	major	theme	of	our	book	in	a	number	of	directions:	(	1)	Methods	for	inference	based
on	larger	numbers	of	observations	and	minimal	assumptions-asymptotic	methods	in	non-	and	semiparametric	models,	models	with	''infinite"	number	of	parameters.	The	family	Fs	=	(	F;;	:	rr	>	0}	is	called	a	scale	parameterfamily,	a	is	a	scale	parameter,	and	Y	is	said	to	generate	Fs.	By	definition,	for	any	a	>	0,	X	F;	{:::}	Xja	F.	By	convention.	We	usually
need	to	postulate	more.	Chapters	1-4	develop	the	basic	principles	and	examples	of	statistics.	•	(	(	n	-	1)s	2	+	b)lxa+n	(a:)	(	1	-	a:	)	upper	credible	bound	for	a-2	.	By	convention	1	-	P	[type	II	error]	is	usually	considered.	We	illustrate	these	ideas	in	the	following	example.	However,	our	focus	and	order	of	presentation	have	changed.	Bickel	University	of
California	Kjell	A.	It	is	not	true	in	general	that	X1	and	X2	that	satisfy	(A.	We	assume	that	we	know	the	joint	probability	distribution	of	a	random	vector	(or	vari	Z	Y.	B	0	or	8	>	0	for	some	parameter	8.	Also	new	is	a	section	relating	Bayesian	and	frequentist	inference	via	the	Bernstein	von	Mises	theorem.	One-Sided	Testsfor	Scale.	1	0.17)	�	�	�	This	is
the	fonnula	for	obtaining	the	fitted	value	vector	Y	=	(Y1	,	.	J0.3HA.	X,j	)	least	twice.	ZN	(f3)	of	{3	(/31	,	.	Show	that	Un	�	0	but	Un	+	0.	The	link	for	us	are	things	we	can	compute,	statistics.	(2)	Such	functions	g	are	called	definitions	(A.8	.	Show	that	the	conditional	(predictive)	distribution	of	Y	given	B(m,	0)	X	=	x	is	i	'	'	'	i	'	Suppose	X1	,	.	The	LR	statistic
for	H	D(	Y	,	j1,0)	=:	:	IL	E	wo	is	just	i	nf	{	D(	Y	,	IL	)	:	1L	E	where	j1,0	is	the	MLE	of	IL	in	wo	.	,	X11	•	Let	Y	Y	(X)	denote	a	predictor	based	on	X	(X1	,	.	N(Bo,	r.f)	densities,	compute	the	predictive	and	(b)	Discuss	the	behavior	of	the	two	predictive	distributions	as	n	-+	oo.	Let	B	=	(JL,	0'2	).	(a)	Show	that	the	family	of	priors	N	11'	(8)	=	IT	p(�,	I	8)	i=l
where	�i	E	A	and	N	E	{1,2,	.	Problems	for	Section	6.2	1.	Let	g(z)	=	E(Y	I	Z	=	z).	For	instance,	in	Example	1.1.2,	if	the	errors	are	normally	distributed	with	unknown	variance	a2	,	then	a2	is	a	nuisance	parameter.	For	the	Gaussian	linear	model	with	known	variance	a-5	(Problem	6.5.4).	P	is	-	le�	5.4.5	continue	to	hold	if	'	'	'	'	•	'	I	j	'	;	is	replaced	by	the
likelihood	ratio	statistic	'	I	1	p(X;,	Oo	+	-;)n)	�	L.,	log	---,-,-;-;,-i'-''p(X;,	Bo)	i�l	I	I	'	.	Show	that	the	sequence	defined	by	this	algorithm	converges	to	the	MLE	if	it	exists.	,	(B,	Yn).	,	Un·	As	x	ranges	over	R,	u	=	Fo(x)	ranges	over	(0,	1),	thus,	Dn	=	sup	I	U(u)	-	ul	O	5,	and	5)]/P(	S	�	5)	�	.0262	if	S	=	5.	,	.Ap)	such	that	(8.10.2)	520	Additional	Topics	in
Probability	and	Analysis	Aj	are	real,	unique	up	to	labeling,	and	are	the	eigenvalues	of	A.	Testing	and	Confidence	Regions.	Then	for	B,	.,P(B)	is	differentiable	and	B	(	)]	'	>	[1/J'	(T(X))	'	-	I(B)	Theorem	3.4.1.	(Information	Inequality).	l5.	Suppose	X�,	.	Hint:	Using	the	notation	of	Section	B.3,	E(Xr)	=	E(Q")	=	(m/kY	E(Vr)E(W-r),	where	V	rv	x�	and	W	t">.J
x!.	2.4	ALGORITH	MIC	ISSUES	As	we	have	seen,	even	in	the	context	of	canonical	multiparameter	exponential	families,	such	as	the	two-parameter	gamma,	MLEs	may	not	be	given	exp1icitly	by	formulae	but	only	implicitly	as	the	solutions	of	systems	of	nonlinear	equations.	that	'	8*	is	a	uniformly	most	accurate	level	LCB	for	B,	if	and	only	if	-8*	is	a	•	.
Here	we	have	relabeled	0	11	+	0	12	,	0	1	1	+	021	as	ry	1	,	ry2	to	indicate	that	these	are	parameters,	which	vary	freely.	Let	J,(B)	)	then	[	)	(	J'	,	�	.,P'	))	(X	>	n	T	)	e(	(B	Var	I	=	l1	nl,	e)	Proposition	3.4.2.	f(	,	B	E	8,	E	(f.	X	is	distributed	according	to	the	exponential	family	p(x,	B)	=	exp{1)(2Ntn(x)	+	N2n(x))	-	A{7J)}h(x)	where	1)	=	log	(	�	B)	,	h(x)	1	=	2N,,
(x)	,	(2.4.22)	A(1J)	=	2nlog(1	+	e")	and	N;n	=	L:�	1	0;	8	>	0.	8.10.1.1.	The	Principal	Axis	Theorem	(a)	A	is	symmetric	nonnegative	definite	(snd)	iff	there	exist	Cpxp	such	that	A	=	CCT	(8.10.1)	(b)	A	is	symmetric	positive	definite	(spd)	iff	C	above	is	nonsingular.	Next,	an	experiment	is	conducted	to	obtain	information	about	B	resulting	in	the	random
variable	X	with	possible	values	coded	as	0,	1,	and	frequency	function	p(x,	B)	given	by	the	following	table	TABLE	1.3.2.	The	frequency	function	p(x,	8,);	i	=	1,	2	Rock	formation	X	e,	02	(Oil)	(No	oil)	0	I	o.3	o.7	0.4	0.6	Thus,	X	may	represent	a	certain	geological	formation,	and	when	there	is	oil,	it	is	known	that	formation	0	occurs	with	frequency	0.3	and
formation	1	with	frequency	0.	The	problem	of	finding	prediction	intervals	is	similar	to	finding	confidence	intervals	using	a	pivot:	Example	4.8.1.	The	(Student)	t	Prediction	Interval.	In	Example	1.1.2	lO	estimate	J1	do	we	use	the	mean	of	�	L:�-	1	Xi,	or	the	median,	defined	as	any	value	such	that	half	the	measurements,	X	the	Xi	are	at	least	as	large	and
half	no	bigger?	We	may	have	other	goals	as	illustrated	by	the	next	two	examples.	Ina	Bayesian	model	where	X	1	,	13.	,	k	and	a2	is	unknown.	Find	the	sample	size	needed	for	a	level	0.01	test	to	have	power	at	least	0.95	at	the	alternative	value	1/>.1	=	1	5	Use	the	normal	approximation	to	the	(c)	Suppose	"	•	!	j	J	!	l	'	i	l	i	.	Show	that	Lq	Lp	(a)	if	p	<	q,
then	Zn	�	Z	=>	Zn	�	Z.	(	l	)	As	an	example	we	calculate	E(Y1	I	Z)	where	Y1	and	Z	are	given	in	Example	B.	Accepting	this	model	provisionally,	what	does	the	213	214	Testing	and	Confidence	Regions	Chapter	4	hypothesis	of	no	sex	bias	correspond	to?	For	instance,	consider	Example	1.	1	<	i	:S:	n,	if	we	believe	l'(z)	=	g((3,	z)	we	However,	if	we	have
observations	we	can	try	to	estimate	the	function	1'0·	For	instance,	and	then	plug	our	estimate	of	(3	into	g.	However,	save	for	a	brief	discussion	in	Volume	2	,	the	conceptual	issues	of	stationarity,	ergodicity,	and	the	associated	probability	theory	models	and	inference	for	dependent	data	are	beyond	the	scope	of	this	book.	If	g	is	a	one-to-one	affine
transformatioll	as	defined	earlier,	then	Y	=	g(X)	has	density	Corollary	(8.2.6)	'	for	y	E	g(	S),	where	det	A	is	the	determinant	of	A.	Here	R(B1,	64)	<	R(81,	65)	but	R(B,,	64)	>	R(	8,,	66).	Here	quite	naturally	A	=	{Permutations	{i	1	,	,	ik)	of	{	1	,	.	-	Chapter	5	et)	for	Sn	is	Monte	Carlo	Simulation	As	mentioned	in	Section	5.1,	approximations	based	on
asymptotic	results	should	be	checked	by	Monte	Carlo	simulations.	Pis	referred	to	as	the	model.	p(en	I	'n-d	f(e	l	)f(c,	-	f3c	l	)	.	L:�"	1	B;	=	1,	is	of	rank	k	-	1.	Informally	B(X1,	good	or	at	least	reasonable	estimate	if	its	value	is	not	greatly	affected	by	the	Xi	-1	Xt,	the	gross	errors.	(a)	Show	that	if	E(X2)	and	E(Y2)	are	finite	then	Cov(X,	Y)	=	Cov(X,	E(Y	I	X)).
Identify	follows.	V(A(y	))	differ.	,	Xn)	is	the	same	as	that	of	(Xip	.	This	result	may	be	derived	by	using	(A.l2.5)	and	(A.I	2.6)	in	conjunction	with	(A.l3.4).	EY2	<	oo	if	and	only	if	E(Y	-	c)2	<	implies	that	p.	For	instance,	in	Example	1.1.2,	we	can	ensure	independence	and	identical	distribution	of	the	observa	tions	by	using	different,	equally	trained	observers
with	no	knowledge	of	each	other's	find	ings.	what	choice	of	c	would	make	be	have	size	exactly	(c)	Draw	a	rough	graph	of	the	power	function	of	be	(d)	How	large	should	n	be	so	that	the	be	(e)	If	in	a	sample	of	size	n	=	20,	Mn	=	specified	in	(b)	when	specified	in	(b)	has	power	n	=	0.	"While	other	general	statistics	texts	at	a	similar	level	touch	on	some	of
the	topics	covered	in	this	book,	none	of	them	cover	the	modern	material	in	this	book	with	comparable	depth.	,	Xn)	is	a	sample	from	N(J	0.	TABLE	1.3.3.	Possible	decision	rules	oi(x	)	•	'	I	x=O	x=1	a,	a,	2	a,	a,	3	a,	a,	4	a,	a,	5	a,	a,	8	a,	a,	7	a,	a,	6	a,	a,	9	a,	a,	Here,	01	represents	"Take	action	a1	regardless	of	the	value	of	X,"	02	corresponds	to	''Take	action
a1.	and	show	that	T	can	be	written	in	the	form	T	�	L/M	where	L	�	2	f�	�	and	M2	�	2).	Then	c,(a,Bo)	=	Bo	+	Zt-a/Vn1(8o)	+	o(n-	112)	where	Zt-	a	is	the	1	-	a	quantile	of	the	N(O,	1)	distribution.	If	h1	j_	hz,	then	(8.10.12)	I	An	interesting	consequence	is	the	inequality	valid	for	all	h1,	hz,	i	(8.10.13)	In	R2	(8.	We	conclude	this	section	with	two	simple
limit	theorems	that	lead	to	approximations	of	one	classical	distribution	by	another.	Let	P	=	{Po	:	B	E	8}	where	Po	is	discrete	and	concentrated	on	X	=	{x	1	,	x2,	.	With	the	tools	and	concepts	developed	in	this	second	volume	students	will	be	ready	for	advanced	research	in	modem	statistics.	Thus,	X	has	an	hypergeometric,	1t(N8,	N,	n	)	distribution.	)	Un
Un,	9.	Show	that	if	(4.4.3).	'	E!Zn	-	ZIP	2:	EfiZn	-	ZIPI{IZn	-	Zl	2:	EP	P(!Zn	-	Zl	2:	E).	l	l	.22)	(i.e.,	are	uncorrelated)	need	be	independent.	n-l	�	ooc	(3.4.2)	1	Because	for	unbiased	estimates	mean	square	error	and	variance	coincide	we	call	an	unbi	ased	estimate	O*(X)	of	q(O)	that	has	minimum	MSE	among	all	unbiased	estimates	for	all	0,	UMVU
(uniformly	minimum	variance	unbiased).	6	.	One	way	of	making	the	notion	"a	statistic	whose	use	involves	no	loss	of	infonnation"	precise	is	the	following.	1	[�J!	c	(d)	n	n	-	(	!)	.	,	Nk-t)	is	sufficient	for	B.	1	P[Xt	=	Xt,	.	RoNCHEm,	P.	We	refer	the	reader	to	Wetherill	and	Glazebrook	(1986)	and	Kendall	and	Stuart	(1966)	for	more	information.	,	17'[:)	where
flj	has	dimension	dJ	and	L;=I	dJ	=	k	and	the	problem	of	obtaining	ij1(to,	71,;	j	¥	l)	can	be	solved	in	closed	form.	would	be	obtained	where	6.	To	get	expressions	for	the	MLEs	of	7r	and	JL,	recall	from	Example	1	.6.8	that	the	inverse	of	the	logit	transform	g	is	the	logistic	distribution	function	Thus,	the	MLE	of	1ri	is	Jfi	=	g	-1	(	L:�=l	Xij(jj	)	.	(A.l3.3)	,
Higher-order	moments	may	be	computed	from	the	moment	generating	function	Mx	(t)	�	[Be'	+	(	1	-	0)]".	n	=	25	I	Tn	1	-	Because	Tn	has	a	T	a	critical	value	is	tn-	1	(1	-	�	a)	and	we	can	use	calculators	or	software	that	gives	quantiles	of	the	the	critical	value.	<	;	.	We	now	think	of	Pe	as	the	conditional	distribution	of	X	given	(J	8.	However,	S(X)	is	exactly
what	is	needed	to	estimate	the	.	We	begin	with	the	bisection	and	coordinate	ascent	methods,	which	give	a	complete	though	slow	solution	to	finding	MLEs	in	the	canonical	exponential	families	covered	by	Theorem	2.3.1.	d,	d(d	2.4.1	The	Method	of	Bisection	The	bisection	method	is	the	essential	ingredient	in	the	coordinate	ascent	algorithm	that	yields
MLEs	in	k-parameter	exponential	families.	(For	a	recent	review	of	expected	p	values	see	Sackrowitz	and	Samuel-Cabo,	1999.)	-	'	:l	=	Problems	for	Section	4.2	1.	Example	4.1.3	(continued).	�	VZ	I	I	2	3	(x)	-	)	.	Thus,	the	critical	value	for	testing	H	:	u	=	uo	versus	K	:	u	<	uo	and	rejecting	H	if	Tn	is	small,	is	the	a	percentile	of	X�-t·	It	is	evident	from	the
argument	of	Example	4.3.3	that	this	test	is	UMP	for	H	:	u	>	uo	versus	K	:	u	<	uo	among	all	tests	0	depending	on	U2	only.	The	likelihood	equation	(6.4.3)	becomes	n1	(2	+	ry)	(n2	+	n3)	n4	+	(1	-	ry)	-:ry	0	,	(6.4.4)	which	reduces	to	a	quadratic	equation	in	if.	We	then	sketch	the	extension	to	functions	of	vector	means.	In	this	section	we	assume	that	the
data	are	grouped	or	replicated	so	that	for	each	fixed	i,	we	observe	the	number	of	successes	Xi	=	E";;;__	I	Yij	where	Yij	is	the	response	on	the	jth	of	the	ffii	trials	in	block	i,	1	:::;	i	:::;	k.	Fonnally,	if	the	measurements	are	scalar,	we	observe	x	1	,	,	Xn,	which	are	modeled	as	realizations	of	X1	,	..	These	are	the	likelihood	ratio	test	and	the	score	or	Rao	test.
This	process	of	combining	a	limit	theorem	with	empirical	investigations	is	applicable	in	many	statistical	situations	where	the	distributions	of	transformations	g(x)	(see	A.8.6)	of	interest	become	progressively	more	difficult	to	compute	as	the	sample	size	increases	and	yet	tend	to	stabi	lize.	(a)	Find	the	joint	distribution	of	Z	and	Y	and	the	conditional
distribution	of	Y	given	Z	and	Z	given	Y.	(8	10.2	1	)	.	)	Xn)	is	the	critical	function	of	the	Wald	test	and	OL	n	(X1	'	.	P[li	=	N	]	=	rr,,	i	=	0,	.	'	464	Then	if	A	Review	of	Basic	Probability	Theory	Appendix	A	X	"'	F1,	,c-.	Families,"	Ann.	As	we	have	seen,	in	examples	such	as	1	.	In	this	manner,	we	obtain	one	or	more	quantitative	or	qualitative	measures	of
efficacy	from	each	experiment.	+	3.	(a)	Show	that	n(X	-	1'1	.	as	the	first	approximation	_	to	the	_	maximum	likelihood	156	Methods	of	Estimation	(c)	lf	n	=	5,	x	-	=	Chapter	2	-	2,	find	(}1	of	(b)	above	using	(}	=	xjn	as	a	preliminary	estimate.	The	data	gathered	are	the	number	of	defectives	found	in	the	sample.	Hint:	Show	that	X[	&(>.)	.	That	is,	if	we
have	a	test	statistic	T	and	use	critical	value	c,	our	test	has	size	a(c)	given	by	a(c)	�	sup(Pe[T(X)	>	c]	:	8	E	8o}	·	(4.	14)	where	X	has	a	B(n,p)	distribution.	When	v	=	v,	the	game	is	said	to	have	a	value	v	.	Fortunately	in	these	cases	the	algorithm,	as	it	should,	refuses	to	converge	(in	11	space!)-see	Problem	2.4.2.	We	note	some	important	generalizations.	,
mk	�	oo	and	H	:	fJ	E	w0	is	true	then	the	law	of	the	statistic	of	(6.4.18)	tends	to	X2r-q·	Hint:	(X;	-	J',)/	/m;K;(l	-	1r;),	I	<	i	<	k	are	independent,	asymptotically	N(O,	1	)	.	Introduction,"	Ann.	Models	such	as	that	of	Example	1.1.2	with	assumptions	(1)	-(3)	are	called	semiparametric.	X(n)),	{Pe	Xi,	(X1,	.	Show	that	if	X1,	.	Such	tests	are	said	to	have	level	(of
significance)	a,	and	we	speak	of	rejecting	H	at	level	o:.	N(iJ.,	a2)	and	we	formally	put	7C(iJ.,	a)	=	,;	,	then	the	posterior	density	!f"(J-t	I	x,	s2)	of	J1.	Similarly,	if	8	c	R'	and	71(	8)	=	Bk	xe8	c	Rk,	then	the	resulting	submodel	of	P	above	is	a	submodel	of	the	exponential	family	generated	by	BTT(X)	and	h.	a	nL,	n	8.10.3.1	Orthogonality	and	Pythagoras's
Theorem	is	orthogonal	to	h2	iff	(h1	,	h2	)	=	0.	End	Lemma	2.4.1.	The	bisection	algorithm	stops	at	a	solution	Xfinal	such	that	l	xfinal	-	x'	l	:S	17	1	r?.	3o5	NONDECISION	THEORETIC	CRITERIA	•	In	practice,	even	if	the	loss	function	and	model	are	well	specified,	features	other	than	the	risk	function	are	also	of	importance	in	selection	of	a	procedure.	l6).
A	reasonable	formulation	of	a	model	in	which	the	possibility	of	gross	errors	is	acknowledged	is	to	make	the	ci	still	i.i.d.	but	with	common	distribution	function	F	and	density	f	of	the	form	f(x)	�	(1	-	>.)	�	(;)	'P	+	>.h(x).	For	a	sample	of	size	n	+	1	from	a	continuous	distribution	we	show	how	the	order	statistics	can	be	used	to	give	a	distribution-free
prediction	inter	val.	Regularity	Conditions	are	Needed	for	the	Information	Inequality.	31.	Initialize	x	;;ld	�	x	,	,	xold	=	xo	.	(b)	Define	the	expected	p-value	as	EPV(8)	=	EeU.	Similar	problems	abound	in	every	field.	I	Xn)·	By	Theorem	1.5.1.	X(n)	is	a	sufficient	statistic	for	0.	Asymptotic	Approximations.	CRUTCHFIELD,	Statlab:	An	Empirical	introduction
to	Statis	tics	New	York:	McGraw-Hill,	1975.	The	same	issue	arises	when	we	are	interested	in	a	confidence	interval	�(X)�	v(X)]	for	v	defined	by	the	requirement	that	=	=	-	P[v(X)	<	v(P)	<	v(X)]	>	1	-	a	•	·I	for	all	P	E	P.	For	instance,	suppose	X1	,	.	In	the	"mixed"	cases	such	as	(}	continuous	X	discrete,	the	joint	distribution	is	neither	continuous	nor
discrete.	(2)	Matrices	of	scalars	and/or	characters,	for	example,	digitized	pictures	or	more	rou	tinely	measurements	of	covariates	and	response	on	a	set	of	1.1.4	and	Sections	2.2.1	and	6	.1.	Proposition	3.4.1.	ljp(x,	B)	�	h(x)	exp{	�(B)T(x)	-	B(B)}	is	an	exponentialfamily	and	TJ(B)	has	a	nonvanishing	continuous	derivative	on	e,	then	I	and	II	hold.	and	Y
has	a	firSt	moment	different	from	0,	we	may	without	Joss	of	=	1	and,	hence,	if	X	�	F;;,	then	E(X)	=	rr.	i	•	i	and	0	with	probability	i	and	V	is	independent	of	�	(c)	Obtain	the	limit	distribution	of	y'n(O	,	-	01,	O,	-	1:1,)	if	O,	=	0,	O,	>	0.	If	X	has	a	P(.\)	distribution,	then	.	We	know	that	given	Z	=	z,	Y	has	a	hypergeometric,	'H(	z,	N,	n	)	,	distribution.	Now	'Pk
is	MP	size	a.	1	9	315	2.68	250	2.64	298	2.37	384	2.61	310	2.12	337	1.94	Using	the	likelihood	ratio	test	for	the	bivariate	normal	model,	can	you	conclude	at	the	I	0%	level	of	significance	that	blood	cholest�rol	level	is	correlated	with	weight/height	ratio?	Then	II	holds	provided	that	for	all	T	such	that	Eo(	ITI)	<	oo	180	Measures	of	Performance	e	for	all	.
Admit	Men	Women	Admit	Deny	235	1	"	3,8	--	�'	35	270	45	7	Men	Women	273	42	n	315	=	three	Deny	122	103	225	1	62	n	=	387	93	69	215	172	(d)	Relate	your	results	to	the	phenomenon	discussed	in	(a),	(b).	In	the	preceding	discussion	we	used	the	fact	that	Z	(!')	=	.,fii(	X	-	I')/	tn-1	(1	-	�a).	Consider	a	population	with	three	kinds	of	individuals	labeled
1,	2,	and	3	occuring	in	the	Hardy-Weinberg	proportions	/(1,8)	=	82	,	!(2,8)	=	28(1	-	8),	f(3,8)	=	(1	-	8)	2	•	For	a	sample	X1	,	.	Let	Fh	·,	J..l.	(Draper's	Research	Memoirs,	Dulan	&	Co,	Biometrics	Series	II.)	PEARSON,	RAIFFA,	H.	HOEL,	P.	This	set	K	will	have	a	point	where	the	max	is	attained.	i	m	Eo,	sup{	ip(X,B')	-	p(X,B)	i	:	B'	E	S'(B,	o)}	�	o	l5-o	where



S(	B,	o)	is	the	o	ball	about	B.	Hint:	Consider	(	U1	,	U2	)	defined	by	(B.4.19)	and	(B.4.22).	(ii)	If	Y	is	a	function	of	Z,	h(Z),	then	the	conditional	distribution	of	Y	is	degenerate,	Y	�	h(Z)	with	probability	I.	X3)	+	be	Cov(X2,	X,)	+	ad	Cov(XJ	,	X,)	+	bd	Cov(X,,	X4)	(A.	Thus,	we	will	need	to	ensure	that	our	parametrizations	are	identifiable,that	is,	lh	i	02	==>
Po1	i=	Pe2•	I	1	'	'	1	•	•	•	'	•	•	•	•	,	�	•	•	I	''	''	,	'	j'	'	j	i	1	Section	1	.	)	Xn)	is	the	critical	function	of	the	LR	test	then,	for	all	"(,	.	(1	.7.1)	Equivalently,	Sv(t)	=	sg.(t)	with	C.	For	instance,	a	method	of	moments	estimate	of	(.\,p)	in	Example	2.3.2	is	given	by	where	Q-2	is	the	empirical	variance	(Problem	2.2.11).	i	I	I	I	This	default	model	is	also	frequently
postulated	for	measurements	taken	on	units	ob	tained	by	random	sampling	from	populations,	for	instance,	heights	of	individuals	or	log	incomes.	if	X	0;	take	action	a2,	if	X	=	1,"	and	so	on.	By	A4(a.s.),	A5(a.s.),	�	n	a.s.	Using	the	strong	law	of	large	numbers	we	obtain	(Problem	Po	[dnqn(t)	�1f(B)exp	{Eo	:;:(Xr,B)�}	(5.5.	2)	.	The	geometry	of	the
bivariate	normal	surface.	If	H	is	rejected,	it	is	natural	to	carry	the	comparison	of	A	and	B	further	by	asking	whether	8	<	0	orB	>	0.	The	family	of	such	level	o:	likelihood	ratio	tests	obtained	by	varying	e10	can	also	be	inverted	and	yield	confidence	regions	for	e1	.	=	1	-	-	2).	Subject	Index.	This	is	written	h	1	notion	of	orthogonality	in	Euclidean	space.	1	)
is	used	for	every	J.Lo	we	see	that	we	have,	in	fact,	generated	a	family	of	level	a	tests	{J(X,	11Jl	where	1	if	vnY�;�	1	>	tn	-1	(1	-	�a)	0	otherwise.	3	)	is	obvious.	=	{9	E	8	:	q(O)	=	w	},	then	{8(w)	:	w	E	!1}	is	a	partition	of	8,	and	8(w)	Let	Hint:	�	9	belongs	to	only	one	member	of	this	partition,	say	8(w).	(x0,	yo	)	is	a	saddle	point	of	g	if	g(xo	,	Yo)	=	sup
g(x,yo)	=	infg(xo	,	y).	Here	are	two	examples	of	testing	hypotheses	in	a	nonparametric	context	in	which	the	minimum	distance	principle	is	applied	and	calculation	of	a	critical	value	is	straightforward.	=	/.00	e,	p(x,	O)d1r(O)j	The	left-hand	side	equals	j"'	-oo	of	all	Bayes	tests	is	=	lh	where	loss,	every	Bayes	test	for	>	.	One	reasonable	choice	for	k	is	k	2),
P(IXI	>	3)	and	P(IXI	�	4)	for	the	normal,	Laplace.	(5.4.44)	But	Polya's	theorem	(A.l4.22)	guarantees	that	su	p	which	implies	that	other	hand,	IPo,[.fii(Bn	-	Bo)	>	z]	-	(1	-	1>(z))l	�	0,	Jn1(80)(c,(a,Oo)	-	Bo)	-	z1_0	(5.4.45)	�	0,	and	(5.4.41)	follows.	Consider,	for	instance,	64	and	66	in	our	example.	H,	ROGERS,	AND	J.	Lehmann,	1990).	Parenthetically	we
note	that	if	A	is	positive	definite,	A	is	nonsingular	(Problem	8.10.1).	Us	=	I{U	E	(hm,	.	For	future	reference	we	note	that	a	statistic	just	as	a	parameter	need	not	be	real	or	Euclidean	valued.	Thus,	once	does	not	the	value	of	a	sufficient	statistic	T	is	known,	the	sample	X	=	given	that	P	is	valid.	we	obtain	E(X)	=	JJ.,	Var	X	=	a]	<	>-	-	aI	-	g(a)	.	The	gen	eral
definition	ofparameters	and	statistics	is	given	and	the	connection	between	parameters	and	pararnetrizations	elucidated.	,	X(n)	(cf.	The	proofs	for	the	upper	confid�nce	hnund	and	interval	constant	fotlow	by	the	same	type	of	argument,	0	We	next	give	connections	between	confidence	bounds,	acceptance	regions,	and	p-values	for	MLR	families:	Let	t
denote	the	observed	value	t	=	T(x)	ofT(X)	for	the	datum	x,	let	244	Testing	and	Confidence	Regions	Chapter	4	o:(t,	Oo	)	denote	the	p-value	for	the	UMP	size	a	test	of	H	:	(}	=	Oo	versus	K	:	()	>	Oo,	and	let	A•	(B)	=	T(A(B))	=	{T(x)	:	x	E	A(B)).	,	Xn	be	i.i.d.	as	X	"'	N(p,,	cr	2	)	.	,	D).	,	n,	be	a	sample	from	a	population	in	Hardy-Weinberg	equilibrium	for	a	two-
allele	locus,	Xi	=	(E;Jo	€;2,	€;3),	where	P9[X	=	(	1	,	0,	0)]	=	B2	,	Po	[X	=	(0,	1,	0)]	=	28(1	-	B),	Po[X	(0,	0,	1)]	=	(I	-	B)2,	0	<	B	<	1.	Summary.	'	I	•	8.10.2	Order	on	Symmetric	Matrices	As	we	defined	in	the	text	for	A,	B	symmetric	A	<	B	iff	B	-	A	is	nonnegative	definite.	Therefore,	E(l(O,o(X))	1	x]	>	E(l(O,	o'(X))	1	x],	0	and	the	result	follows	from	(3.2.9).	To
investigate	this	question	we	would	have	to	perform	a	random	experiment.	Far	more	important	than	the	choice	of	action	space	is	the	choice	of	loss	function	defined	as	a	function	l	:	P	x	A	R+.	I'	'	i	!	Section	1.3	17	The	Decision	Theoretic	Framework	Xjn	as	our	estimate	or	ignore	the	data	and	usc	hiswrical	infonnation	on	past	shipments,	or	combine	them
in	some	way?	When	P	is	not	an	exponential	family	both	existence	and	unicity	of	MLEs	become	more	problematic.	,.....	We	shall	go	into	this	further	in	Chapter4.	The	main	difference	in	our	new	treatment	is	the	downplaying	of	unbiasedness	both	in	es	timation	and	testing	and	the	presentation	of	the	decision	theory	of	Chapter	10	of	the	first	edition	at	this
stage.	In	this	example	we	bave	assumed	that	IJo	and	IJ,	for	the	two	populations	are	known.	However,	what	reasonable	means	is	connected	to	the	choice	of	the	parameter	we	are	estimating	(or	testing	hypotheses	about).	Nevertheless.	Let	X1	,	.	1	2,	U1	,	,	Un+	l	are	i.i.d.	uniform,	U(O,	1	)	.	The	case	we	have	I	Section	2.4	131	Algorithmic	Issues	just
discussed	has	d1	=	·	·	·	=	dr	=	1,	r	=	k.	To	be	a	bit	formal,	suppose	that	if	n	measurements	X*	=	(Xi,	.	•	''	.	Because	0"1	----)	0,	(	n	0"	1	I	0"	)	----)	1,	and	X	.!:..,	e	as	n	----)	oo	,	we	find	that	the	interval	(	4.8.3)	converges	in	probability	to	e	±	z	(	1	-	�	a)	O"o	as	n	----)	oo	.	l	;	j	•	'	(B.I.2)	if	the	Yi	are	all	0	or	1	and	Eyi	=	z.	SCHLAIFFER,	Applied	Statistical
Decision	Theory,	Division	of	Research,	Graduate	School	of	Business	Administration,	Harvard	University,	Boston,	1961.	If	n	=	i	�	0	and	the	information	bound	is	infinite.	Show	that,	under	the	conditions	of	(c),	..jii(X	-	0)	!:.	An	interesting	feature	of	the	preceding	example	is	that	the	test	defined	by	(4.2.6)	that	is	MP	for	a	specified	signal	v	does	not
depend	on	v:	The	same	test	maximizes	the	power	for	all	possible	signals	v	>	0.	Now	[Y	B	•	YB]	is	said	to	be	a	level	(1	-	a	)	Bayesian	prediction	interval	for	Y	Xn+	l	if	=	Section	4	.	The	three	principal	issues	we	discuss	are	the	speed	and	numerical	stability	of	the	method	of	computation	used	to	obtain	the	procedure,	interpretability	of	the	procedure,	and
robustness	to	model	departures.	To	obtain	the	predictive	distribution,	note	that	given	X	=	t,	Xn+	l	-	9	and	9	are	still	uncorrelated	and	independent.	The	argument	of	Example	2.3.3	can	be	applied	to	determine	existence	in	cases	for	which	(2.3.3)	does	not	have	a	closed-form	solution	as	in	Example	1.6.8-see	Problem	2.3.1	and	Haberman	(1974).	Describe
in	detail	what	the	coordinate	ascent	algorithm	does	in	estimation	of	the	regres	sion	coefficients	in	the	Gaussian	linear	model	Y	�	ZDJ3	+	<	,	rank(ZD)	=	k,	1)	=	I	\	B(1	0)	[1	-	(1	-	B)"]{	x	-	nB-	x(1	-	B)"}	,	nB2(1	-	B)"[n	-	1	+	(1	-	B)"]	-	[1	-	(1	-	8)"]'[(1	-	2B)x	+	nB2	]	-	-	_,....	(3)	Give	heuristic	discussions	of	more	advanced	results	such	as	the	large	sample
theory	of	maximum	likelihood	estimates,	and	the	structure	of	both	Bayes	and	admissible	solutions	in	decision	theory.	Let	Z	.N(O,	1).	Say	there	is	a	closed-form	MLE	or	at	least	lp,x(B)	is	concave	in	B.	The	following	important	example	illustrates,	among	other	things,	that	the	UMP	test	phenomenon	is	largely	a	feature	of	one-dimensional	parameter
problems.	By	a	good	mathematics	background	we	mean	linear	algebra	and	matrix	theory	and	advanced	calculus	(but	no	measure	theory).	l	l	.23)	i=l	References	Gnedenko	(1967)	Chapter	5,	Sections	27,	28,	30	Hoe!,	Port,	and	Stone	(1971)	Sections	4.2-4.5,	7.3	Parzen	(	I	960)	Chapter	5;	Chapter	8,	Sections	l-4	Pitman	(1993)	Section	6.4	A.l2	MOMENT
AND	CUMULANT	GEN	ERATING	FUNCTIONS	A.l2.1	If	E(	e"'	I	X	I	)	<	oo	for	some	s0	>	0,	Mx	(s)	=	E(	e'X	)	is	well	defined	for	lsi	S	so	and	is	called	the	moment	generating	function	of	X.	This	will	be	done	in	Sections	3.5.3	and	6.6.	Experiments	in	medicine	and	the	sociaJ	sciences	often	pose	particular	difficulties.	GIRSHICK,	Theory	of	Games	and
Statistical	Decisions	New	York:	Wiley,	1954.	Chou,	G.	Data	can	consist	of:	(1)	Vectors	of	scalars,	measurements,	and/or	characters,	for	example,	a	single	time	series	of	measurements.	Fix	t	and	divide	[0,	t]	into	n	intervals	[0,	tfn],	(t/n,	2tfn],	.	1969.	Suppose	that	(Z1,	Yi	)	,	.	,	/3p)T	is,	if	N	2::::	7=1	m	i,	The	log	likelihood	l	(	1r({3))	p	k	k	(6.4.	1	2)	g(	(	f3	)
{3	)	lN	m;	lo	l	+	exp{z;	}	+	log	';;	fJ;	T;	The	special	case	p	Zi	=	=	=	where	Tj	=	)	(	�	=	�	�	=	=	2::::7=1	ZijXi	and	we	make	the	dependence	on	N	explicit.	Pml	+	PJt	Pml	+	P/1	+	Pmo	+	PJO	In	fact,	the	same	data	can	lead	to	opposite	conclusions	regarding	these	hypotheses-a	phe	nomenon	called	Simpson's	paradox.	-	9	E	8},	8	c	RP,	p	>	I	,	be	a	family
of	models	for	X	E	X	c	R"�	k	Let	q	be	a	map	from	8	onto	!1,	!1	c	R	,	I	�	k	<	p.	E.	7).	0.25	and	net	=	0.25	and	(n	-	k	is	an	integer,	use	(3.5.5)	to	plot	the	sensitivity	curve	of	the	l)a	is	an	integer.	Such	a	function	can	usually	be	found	if	a	depends	only	on	J-l,	which	varies	freely.	,	k}]	with	canonical	parameter	1J	and	£	=	Rk-l_	More	over,	the	parameters	'IJ	=
log(Pry	[X	=	j]/Pry[X	=	k]),	1	<	j	<	k	-	1,	are	identifiable.	a	(b)	Suppose	X1	,	.	It	can	be	shown	that	(Problem	6.3.8)	E(Oo)	=	I,,(Oo)	-	!2	1	(	9o)I!i1	(9o)Il2(9o)	(6.3.21)	where	I11	is	the	upper	left	q	x	q	block	of	the	r	x	r	infonnation	matrix	I(	80),	I12	is	the	upper	right	6.3.9)	under	A0--A6	and	consistency	�	q	x	d	block,	and	so	on.	7	=	7	=	1.57.	We	derive	the
information	inequa!ity	in	one-parameter	models	and	show	how	it	can	be	used	to	establish	that	i	n	a	canonical	exponential	family,	T(X)	is	the	UMVU	estimate	of	its	expectation.	and	·'	•	•	•	where	r	denotes	the	gamma	function.	Conversely,	if	S(X)	is	a	Ievel	l	-	a	confidence	region	for	v,	then	the	test	that	accepts	H.,.0	if	and	only	if	v0	is	in	S(X),	is	a	level	o
test	for	H.,.0	•	Formally,	let	Pv0	=	{P	:	v(P)	�	v0	:	vo	E	V}.	Show	in	Example	1.2.1	that	the	conditional	distribution	of	6	given	I:;	1	Xi	=	k	agrees	with	the	posterior	distribution	of	6	given	X1	=	X	t	,	.	The	algorithm	was	fonnalized	with	many	examples	in	Dempster,	Laird,	and	Rubin	(1977),	though	an	earlier	general	form	goes	back	to	Baum,	Petrie,
Soules,	and	Weiss	(1970).	Third	Berkeley	Symposium	on	Math.	Var	X	and	Var	X	continues	to	hold	if	'";.,5�11	>	k,	even	for	sampling	without	replacement	in	each	stratum.	Situation	(b)	can	be	thought	of	as	a	generalization	of	(a)	in	that	a	quantitative	measure	is	taken	rather	than	simply	recording"defective"	or	not.	Hint:	(a)	Consider	the	likelihood	as	a
function	of	Tfit.	3.	•	'	(b)	If	no	assumptions	are	made	about	h,	then	p,	is	not	identifiable.	•	•	•	•	large.	D	Next,	in	the	one-sample	situation,	let	h(X)	be	an	estimate	of	h(J.L)	where	h	is	con	tinuously	differentiable	at	I'·	hl	1	>(!')	i	0.	Riesz.	,	Zn	-	Z)	are	independent.	(5.3.2)	where	[X'	-	l'f	<	[X	-	J'f.	There	is	a	substantial	number	of	statisticians	who	feel	that	it
is	always	reasonable,	and	indeed	necessary,	to	think	of	the	true	value	of	the	parameter	(J	as	being	the	realization	of	a	random	variable	8	with	a	known	distribution.	(c)	The	following	2	x	2	tables	classify	applicants	for	graduate	study	in	different	depart	ments	of	the	university	according	to	admission	status	and	sex.	(d)	Find	or	write	a	computer	program
that	carries	out	the	Welch	test.	___,	0	Theorem	5.4.4	tells	us	that	the	test	under	discussion	is	consistent	and	that	for	n	large	the	power	function	of	the	test	rises	steeply	to	a	from	the	left	at	00	and	continues	rising	steeply	to	1	to	the	right	of	80.	In	practice,	if	we	need	the	distribution	of	Sn	we	try	to	calculate	it	exactly	for	small	values	of	n	and	then
observe	empirically	when	the	approx	imation	can	be	used	with	safety.	I	(b)	Show	that	812/(811	+	81	2	)	�	82	1/(821	+	B,)	iff	R1	and	C,	are	independent.	=	4.3	U	N	I	FORMLY	MOST	POWERFUL	TESTS	ANO	MONOTONE	L	I	K	E	LIHOOD	RATIO	MODELS	We	saw	in	the	two	Gaussian	examples	of	Section	4.2	that	UMP	tests	for	one-dimensional
parameter	problems	exist.	-	15.	We	return	to	conjugate	families	in	Section	1.6.	Summary.	,	XN	}	(3.4.3)	0	otherwise.	The	likelihood	equations	are	equivalent	to	(Problem	2.3.2(b))	r'	-	r(j))	-	log	A	=	log	X	-	p	�	=X	A	(2.3.4)	(2.3.5)	where	log	X	=	�	L:�	1	logXi.	Itiseasy	to	seethat	ifn	2	2,	T	has	a	density.	Similarly,	note	that	in	the	Hardy-Weinberg	Example
2.2.6,	if	2n1	+	n,	=	0,	the	MLE	does	not	exist	if	8	=	(0,	1	)	,	whereas	if	B	=	[0,	1]	it	does	exist	D	�nd	is	unique.	Suppose	A4',	A2,	and	A6	hold	for	.p	�	&l(&B	so	that	I(B)	<	oo.	K.,	"On	the	General	Theory	of	Skew	Correlation	and	Nonlinear	Regression,"	Proc.	Squared	error	gives	much	more	weight	to	those	(}	that	are	far	away	from	(}	than	those	close	to
(}.	Common	sense	indicates	that	to	get	information	about	B.	the	second	says	that	if	Appendix	A	Nn	(	t)	f	N	(	t	)	1	there	must	have	been	a	multiple	occurrence	in	a	small	subinterval,	the	third	is	just	(A.2.5},	and	the	remaining	identities	follow	from	(b)	and	(d).	In	Example	1.1.1	do	we	use	the	observed	fraction	of	defectives	'	'	•	I	'	''	i'	i	.	FREEMAN,
"Estimation	and	Inference	by	Compact	Coding	(With	Discussions),"	J.	They	are	not	covered	under	our	general	model	and	will	not	be	treated	in	this	book.	For	the	purpose	of	modeling,	imagine	a	sequence	X1	,	X2,	of	i.i.d.	survival	tjmes	with	distribution	F0	•	Let	N	be	a	zero-truncated	Poisson,	P()..),	random	variable,	which	is	independent	of	X1	J	X2,	.	If	a
=	quartile	4.	Then	Snj	-	np	�	Z,	.np(	!	-	p)	Z	has	has	a	(A.	Wiley	&	Sons,	New	York,	1954.	Exhibit	the	null	distribution	of	2	log	.\(Xi,	Yi	:	1	<	i	<	n).	..	+	(	lo	g	a2	)	]	-	�}	-	{	-	�	[	(log	2	7T)	+	(log	a5	)	J	�	}	-	Our	test	ruie,	therefore,	rejects	H	for	large	values	of	(a5	fa	2	)	.	16.	Let	X1	,	i	p	(x,	O)d1r(O)	(	81	is	of	the	form	Ot	for	some	t.	Suppose	that	Z	has	a
binomial.	..!.!...	This	is	obviously	overkill	but	suppose	that,	in	the	study,	drugs	A	and	B	are	given	at	several	10	Statistical	Models,	Goals,	and	Performance	Criteria	Chapter	1	dose	levels.	'	1.4	•	PREDICTION	The	prediction	Example	1.3.2	presented	important	situations	in	which	a	vector	z	of	co	variates	can	be	used	to	predict	an	unseen	response	Y.	H.,
Optimal	Statistical	Decisions	New	York:	McGraw-Hill,	1974.	,	Xn	from	this	population,	let	N1	N2,	and	N3	denote	the	number	of	Xj	equal	to	I,	2,	and	3,	respectively.	,8v},	Example	3.2.2.	Bayes	Procedures	Whfn	8	and	A	Are	Finite.	If	X	is	discrete,	"'	P	=	X	Using	the	fact	that	g-1	is	approximately	linear	on	A(y)	,	it	is	not	hard	to	show	that	V(g-l(A(y)))	!	J•-'
(y)	l	.	'	"	i	(8.2.7)	Example	B.2.1	is	a	special	case	of	the	corollary.	-	a	2	+	n2	)	(	2n3	+	n2	)	)	)	2	,	(2nl	+	n2)	(2n3	2	,	2n	T	2n	0	Example	6.4.5.	The	Fisher	Linkage	Model.	Unfortunately	strict	concavity	of	lx	is	not	inherited	by	curved	exponential	families,	and	unicity	can	be	lost-take	c	not	one-to-one	for	instance.	,	'	We	claim	that	(5.5.	12)	for	all	8.	We	next
show	that	for	a	certain	notion	of	accuracy	of	confidence	bounds,	which	is	connected	to	the	power	of	the	associated	one-sided	tests,	optimality	of	the	tests	translates	into	accuracy	of	the	bounds.	Thus,	from	D	(X,	ji)	K:	(6.4.	1	1)	Xdmi	and	Xi	.	We	find	such	an	interval	by	noting	,!	and	solving	the	inequality	inside	the	probability	for	p..	That	is,	,	a(k)	�
sup{Pe[T(X)	>	k]	:	8	E	eo}	�	Pe,	[T(X)	>	k].	Subject	matter	specialists	usually	have	to	be	principal	guides	in	model	formulation.	1Ji2	=	z:::	1	Oii.	claim	(5.4.35)	is	equivalent	to	(5.4.36)	=	0,	cross	multiplication	shows	that	(5.4.36)	is	just	the	correlation	Because	Eo'!j;(X1	,	B)	inequality	and	the	theorem	follows	because	equality	holds	iff	'ljJ	is	a	nonzero
multiple	a	(	B)	o	of	3i;	(X1	,	B).	Establish	5.3.28.	Using	A6	we	obtain	]	for	all	t	1	and	AS,	(5.5.14)	�	1.	P	�	(Zit	�	Z,	)6t	�	"'	�	{J,	Z,,	j=2	�(!	)	2	l'	''	•	I:�	1	(Yi	�	'	2	•	Similarly	compute	the	information	matrix	when	the	model	is	written	as	•	y;	=	{J,	(Z"	where	{31,	12	,	I	'	j=l	and	the	c;	do	not	depend	on	{3.	Find	the	MP	test	for	testing	H	:	{}	=	1	versus
K	:	B	=	81	>	1.	At	the	other	end	of	the	scale	of	difficulty	for	books	at	this	level	is	the	work	of	Hogg	and	Craig,	Introduction	to	Mathematical	Statistics,	3rd	ed.	53	and	p.	n2	n	14.	•	1	(28')	r)	(	Y	'	exp	28'	•	.	We	begin	by	fonnalizing	what	we	mean	by	"a	reduction	of	the	data"	Chapter	1	Statistical	Models,	Goals,	and	Performance	Criteria	42	loses
information	about	the	labels	of	the	Even	T	�	The	idea	of	sufficiency	is	to	reduce	the	data	with	statistics	whose	use	involves	no	loss	of	:	(}	E	8	}.	(c)	Show	that	the	MLEs	exist	iff	0	<	Na+c•	N+be	<	N++c	for	all	a,	b,	c	and	then	are	given	by	i	•	Section	2.5	Problems	and	Complements	!57	Hint:	(b)	Consider	Na+c	-	N+	t	c/A,	N+bc	-	N++c/	B,	Nt-	t	!b!£	=
=a',b'	,c'	obtained	by	fixing	the	"b,	c"	and	"a,	c"	parameters.	There	exists	a	compact	set	K	c	e	such	that	l(ll)	<	c	for	all	ll	not	in	K.	A	one-dimensional	problem	I	Section	2.4	Algorithmic	Issues	133	in	which	such	difficuJties	arise	is	given	in	Problem	2.4.13.	<	I.	l2.9)	c	7	=	c;(X	)	=	.	B(	B),	distribution	and	that	given	Z	=	z,	hypergeometric,	'H(z,	n	)	,
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1	.290	1.660	1.984	2.08	1	2.364	2.626	2.871	3.174	3390	1	000	0.675	1.282	1.646	1.%2	2.056	2.330	2.581	2.813	3.098	3.300	0.674	1.282	1	.645	1	.960	2.054	2326	2.576	2.807	3.090	3.291	50%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%	00	Confidence	level	C	The	entries	in	the	top	row	are	the	probabilities	of	exceeding	the	tabled	values.	We
stress	that	looking	at	randomized	procedures	is	essential	for	these	conclusions,	although	it	usually	turns	out	that	all	admissible	procedures	of	interest	are	indeed	nonrandomized.	L(x,	O,v)	A	point	>	rr/	(	1	-	rr	)	is	equivalent	to	T	>	t.	,	(Zn	,	Yn	)	from	the	family	with	density	p	(z,	y,	{3)	=	h(y)	qo	(z)	exp	{	(zT{3)y	-	A0	(zT	{3)	}.	Here	is	an	example	to	be
pursued	later.	)	that	is	independent	ofO	such	that	"'£';'	1	p(x;	O)	=	I	for	all	0.	,	xn)	=	'	(	1	.2.9)	fo	rr(t)tk(1	-	t)n	-kdt	In	the	cases	where	.	Find	the	efficiency	ep(	X,	X)	as	defined	in	(f).-	If	and	a	=	1,	=	4,	evaluate	the	efficiency	for	£	=	.05,	0.10,	0.15	and	0.20	and	note	that	X	is	more	efficient	than	X	for	these	gross	error	cases.	J	-	1	,	.	'	Therefore,	6*	=	85	as
we	found	previously.	(Pareto	density)	144	Methods	of	Estimation	(c)	f(3c,8)	Chapter	2	c8".r-lc+l),	:r	>	8;	c	constant	>	0:	8	>	0.	(X,	Y)	-	E(	XY)	(8.10.18)	II	XII	=	E	l	(X'	)	.	,	b	-	1	only.	'Un	(S�SJ	-	8f2)/(n	-	)S	L��3	Wt/(n	u2,	.	Ifthe	equations	-	have	a	solution	B	(x)	E	C0,	then	it	is	the	unique	MLE	of	B.	For	each	simulation	the	two	samples	differ	in	size:	The
second	sample	is	two	times	the	size	of	the	first.	!	I	·1''	1	'	i	Section	B.ll	531	Problems	and	Complements	12.	Let	(X,	Y)	�	N	(	1,	1	,	4,	1	,	�	).	respectively,	with	all	parameters	assumed	unknown.	These	issues	will	be	discussed	further	in	Volume	2.	l	2.2)	esxpx	(x)dx	if	X	is	continuous.	Show	that	both	,P	and	�	are	identifi	able.	Khintchin's	(Weak)	Law	of
Large	Numbers	Let	{Xi},	i	>	1	,	be	a	sequence	of	independent	identically	distributed	random	variables	with	finite	mean	J-L	and	define	Sn	=	L�	l	xi.	In	that	case	rejecting	the	hypothesis	at	level	as	a	measure	of	the	weight	of	evidence	we	attach	to	the	falsity	of	H.	Natural	initial	assumptions	here	are:	.	(b)	Find	the	test	that	is	best	in	this	sense	for
Example	4.2.1.	5.	Hint:	Use	the	results	of	Theorem	1.6.2	to	find	the	mean	and	variance	of	the	optimal	test	statistic.	(ii)	4zy,	0	<	z	<	1,	0	<	y	<	1	P(z,Y)	(z	,	y)	0	otherwise.	Y	-	I'2)T	!:.-1	(X	-	I'	I.	(2)	A	vector	parametrization	that	is	unidentifiable	may	still	have	components	that	are	parameters	(identifiable).	Then	we	can	conclude	from	Theorem	6.3.3	that	2
log	>.	Also,	the	robustness	considerations	of	Section	3.5	favor	X{k)	(see	Example	3.5.2).	Symmetry	(or	invariance)	restrictions	are	discussed	in	Ferguson	(1967).	!	i·	'	.	The	Bayesian	prediction	interval	is	derived	for	the	normal	model	with	a	normal	prior.	then	X	has	a	!3(n,	B)	distribution	(see	(A.6.3)).	Thu	s,	Zi	is	a	d	dimensional	vector	that	gives
characteristics	such	as	sex,	age,	height,	weight,	and	so	on	of	the	ith	subject	in	a	study.	B	y	our	definition	of	conditional	probability	in	the	discrete	case,	it	is	enough	to	show	that	Po	[X	=	x;	IT	=	I;)	is	independent	of	8	on	each	of	the	sets	S,	=	{0	:	Po[T	=	t,]	>	0},	i	=	1	,	2	,	.	Contingency	Thbles	403	Logistic	Regression	for	Binary	Responses	408	6.4.3	*6.5
Generalized	Linear	Models	4!1	*6.6	Robustness	Properties	and	Semiparametric	Models	417	6.7	Problems	and	Complements	422	6.8	Notes	438	6.9	References	438	A	A	REVIEW	OF	BASIC	PROBABILITY	THEORY	441	A.1	The	Basic	Model	441	A.2	Elementary	Properties	of	Probability	Models	443	A.3	443	Discrete	Probability	Models	A.4	Conditional
Probability	and	Independence	444	A.5	Compound	Experiments	446	A.6	Bernoulli	and	Multinomial	Trials,	Sampling	With	and	Without	Replacement	447	A.7	Probabilities	on	Euclidean	Space	448	A.S	Random	Variables	and	Vectors:	Transformations	451	A.9	Independence	of	Random	Variables	and	Vectors	453	A.!0	The	Expectation	of	a	Random	Variable
454	A.	�	�	(5.4.41)	(5.4.42)	(5.4.43)	Property	(5.4.42)	is	sometimes	called	consistency	of	the	test	against	a	fixed	alternative.	To	prove	the	sufficiency	of	(1	.52),	we	need	only	show	that	Po	[X	=	XjiT	=	ti]	is	independent	of	e	for	every	i	and	j.	,	Xn	and	k	is	defined	by	P(S	>	k)	�	1	-	a	for	a	binomial,	B(n,	�	),	J.L	(X)	is	random	variable	S.	The	underlying
sources	of	these	changes	have	been	the	exponential	change	in	com	puting	speed	(Moore's	"law'')	and	the	development	of	devices	(computer	controlled)	using	novel	instruments	and	scientific	techniques	(e.g.,	NMR	tomography,	gene	sequencing).	,	-Xn.	�	�	(a)	Consider	the	test	statistic	D(Fx	,	F	x)	�	max{	[Fx(t)	-	F_	x(t)[	:	t	E	R}.	,	We	will	consider
situations	(b)	and	(c).	F(O,	0,	0	,	0,	1,	1,	p)	=	!	+	(1/21T)	sin	-l	p.	!	'	"shape"	of	'	class	F	=	iff	F(x)	when	F(x)	is	unknown	.	A	detailed	discussion	of	the	appropriateness	of	the	models	we	shall	discuss	in	particular	situations	is	beyond	the	scope	of	this	book,	but	we	will	introduce	general	model	diagnostic	tools	in	Volume	2,	Chapter	1.	The	latter	include	the
principal	axis	and	spectral	theorems	for	Euclidean	space	and	the	elementary	theory	of	convex	functions	on	elementary	introduction	to	Hilbert	space	theory.	In	Example	1	.2.1	suppose	n	is	large	and	(1	jn)	L�	1	Xi	the	prior	distribution	is	beta,	f3(r,	s)	.	Statist.,	I,	538-542	(1973).	Thus,	we	reject	H	if	S	exceeds	or	equals	some	integer,	say	k,	and	accept	H
otherwise.	How	useful	a	particular	model	is	is	a	complex	mix	of	how	good	the	approximation	is	and	how	much	insight	it	gives	into	drawing	inferences.	Because	a	test	of	level	a	is	also	of	level	a'	>	a,	it	is	convenient	to	give	a	name	to	the	smallest	level	of	significance	of	a	test.	Pmod,	pfld.	10.8)	hold	for	the	conditional	expectation	given	Z	=	z.	•	x	>	0,	0	>
0.	A	general	solution	of	this	and	related	problems	may	be	found	in	the	book	by	Barlow,	Bartholomew,	Bremner,	and	Brunk	(1972).	Show	that	if	X	�	7,.,	then	for	r	even	and	r	<	k.	Example	3.4.3.	Suppose	X1,	Xn	is	a	sample	from	a	normal	distribution	with	unknown	mean	B	and	known	variance	a2.	�	U(O,	I)	and	set	Un	=	2n	1{U	E	[0,	�)}.	If	f1old	is
close	enough	to	fj,	this	method	is	known	to	converge	to	Tj	at	a	faster	rate	than	coordinate	ascent	see	Dahlquist,	BjOrk,	and	Anderson	(1974).	Let	X	denote	the	sample	median.	Thus,	if	x2	measures	devia	tions	from	independence,	Z	indicates	what	directions	these	deviations	take.	(b)	Show	that	Y	and	X	-	Y	are	independent	and	find	the	conditional
distribution	of	X	given	Y	=	y.	From	the	joint	distribution	of	Z	and	V,	get	the	joint	distribution	of	Y1	=	Z/	,jV7k	and	Y2	=	V.	=	(3.4.	13)	By	(A.	-	l	'	Note	that	F(xp)	•	'	'	'	'	'	•	=	vn[F(xp)	-	F(xp)J	.	em	.	We	denote	the	jth	derivative	of	h	by	h(i)	and	assume	]jh(ml]]oo	=	SUPx	]M	ml	(	x)J	<	M	<	oo	l	l	•	'	.	272	Testing	and	Confidence	Regions	Chapter	4	(c)	Are	any
of	the	four	statistics	in	(a)	invariant	under	location	and	scale.	=	Under	our	assumptions,	The	problem	of	finding	the	supremum	of	that	p	(	x	,	B	)	was	solved	in	Example	3	.	�	0	as	h	�	0.)	Physically,	these	a"umptions	may	(i)	The	time	of	recurrence	of	the	"event"	is	unaffected	by	past	occurrences.	Here	Xq	denotes	the	qth	quantile	of	the	X;	distribution.
If,	say,	Q	is	the	empirical	distribution	of	the	Zj	in	Section	1.3	19	The	Decision	Theoretic	Framework	the	training	set	(	z	1	,	Y),	.	Find	maximum	likelihood	estimates	of	J1	and	a2	.	f3(0o)	(	a,	(	L4)	1	so	=	nOo	+	2	+	z(1	-a)	InOo(J	-Oo)]	1;2	.	Thus,	i/N,	X	has	the	'	'	'	'	'	•	P[X	=	k,	II	=	N	l	-	(	1	.2.2)	This	is	an	example	of	a	Bayesian	model.	rate	n	-	!	,	whereas	the
width	of	the	prediction	interval	tends	to	2az	(	1	Moreover,	the	confidence	level	of	(	4.4.	1	)	is	approximately	correct	for	large	n	even	if	the	sample	comes	from	a	nonnormal	distribution,	whereas	the	level	of	the	prediction	interval	(	4.8.1)	D	i	s	not	(	1	-	a	)	i	n	the	limit	a	s	n	--+	oo	for	samples	from	non-Gaussian	distributions.	Thus,	minimizing	n	1	'	p	z;	/3)
2	=	2:::	'	•	•	•	'	Hint:	Write	n	1	l	(6.2.26)	and	(6.2.27).	Show	that	I	•	(	X	-	p,1	Y	-	p,2	)	,	(Tl	0"2	has	a	N(O,	0,	1,	1,	p)	distribution	and,	hence,	express	F(	·,	·	,	ttl	,	J.l2,	af,	cr�,	p)	in	terms	of	F(·,	·	,	0,	0,	1	,	1,p)	.	For	instance,	in	Example	1.1.3	even	with	the	simplest	Gaussian	model	it	is	intuitively	clear	and	will	be	made	precise	later	that,	even	if	.6..	RP.	n	N
(	-	)	B'(l	-	B)N-'/b(y)	(	��;	)	z-y	8'	(1	-	B)	N-	,	�	BY	(l	-	B)	N-y	Problems	for	Section	B.2	l.	There	are	ideal	observations,	X	�	Po	with	density	p(x,	8),	8	E	6	c	Rd	Their	log	likelihood	lp,x(8)	is	"easy"	to	max	imize.	The	central	product	moment	of	order	(1,	I)	is	plicity	we	consider	the	case	=	-	I	'	'	'	'	458	A	Review	of	Basic	Prob.ability	Theory	Appendix	A	called
the	comriance	of	X1	and	.\:2	and	is	written	Cov(	.\	1-	X2).	,p,	and	Lf	0	1r	i	=	1.	•	,	Xn	be	a	sample	from	a	population	with	mean	J1	and	variance	a2	Suppose	h	has	a	second	derivative	h	2(	Jar	+	a�	-	2pawz)z(1	�	(c)	Show	that	if	I	.	If	c2	>	0,	the	bound	is	sharp	and	is	attained	only	if	Yi	X·1	>	_	£l..	LEHMANN,	Descriptive	Statistics	for	Nonparametric
Models.	Let	x	=	xo	<	x1	]x;	-	x;	-	,	J	:S	J(	I,	if	8g2(x)j8xi8xi	exists,	convexity	is	equivalent	to	L	u,u;82g	(x)f8x,8x;	>	0,	all	u	E	Rk	and	x	E	S.	We	ask	whether	the	parameter	B	is	in	the	subset	60	or	subset	81	of	e,	where	{So,	81},	is	a	partition	of	e	(or	equivalently	if	p	E	Po	or	p	E	PI)·	If	we	take	action	a	when	the	parameter	is	in	ea.	Theorem	4.2.1.	(Neyman-
Pearson	Lemma).	t	We	want	to	test	3.	zlil	in	RP	ball	about	"k	L......	Such	statistics	are	called	equivalent.	CARROLL,	R.	Complete	Families	of	Tests	The	Neyman-Pearson	framework	is	based	on	using	the	0-1	loss	function.	,.....,	xi	=	1-t	+	l':i,	1	0}	where	tP	is	the	standard	normal	distribution.	Note	for	Section	1.4	(I)	Source:	Hodges,	Jr.,	J.	For	instance,	in
Example	1	.	Corollary	4.3.1.	Suppose	{Po	:	0	E	6},	e	c	R,	is	an	MLRfamily	in	T(r).	l	1	.	For	instance,	if	we	observe	an	effect	in	our	data,	to	what	extent	can	we	expect	the	same	effect	more	generally?	oo	±oo.	Thus,	for	example	N12	is	the	number	of	sampled	individuals	who	fall	in	category	A	of	the	first	characteristic	and	category	B	of	the	second
characteristic.	Then	it	is	easy	to	see	that	Theorem	2.4.2	has	a	generalization	with	cycles	of	length	r,	each	of	whose	members	can	be	evaluated	easily.	4	.	To	find	the	density	p(x	1	,	,	xn).	rn	·	rn	(a)	Show	that	(b	)	Let	n-1	n	Show	that	the	matrix	A	defined	by	Y	=	AX	is	orthogonal	and,	thus,	satisfies	the	require	ments	of	Theorem	B.3.2.	(c)	Give	the	joint
density	of	(X(n),	�,	.	[	L.,	dt.	Putting	the	bounds	f!(S),	O(S)	together	we	get	the	confidence	interval	(O(S),	O(S)]	oflevel	(1-	2a).	By	(a)	and	(b),	Nn	(t)	has	a	B(n,	P	[N(tfn)	>	1])	distribution.	l	'	•	i	Section	6.7	Problems	and	Complements	431	�(1)	8.	,	>-$	)	in	(B.10.1).	Example	4.4.1,	The	(Student)	t	Interval	and	Bounds.	Decide	I'	>	l'c	ifT	>	z(l	-	ia).	We
want	to	estimate	the	parameter	X	=	estimate	families	drawn	at	random	without	=	(x1,	.	1.	WErHERILL,	G.	E(E(Y	I	Z))	using	(a).	Examples	are	f	Gaussian,	and	f(x)	=	e-x(l	+	ex)-',	(logistic).	Show	that	if	02	=	BB	a	unique	MLE	for	Bt	exists	and	10.	0;	a	y	at	time	t	is	sometimes	modeled	by	>	0,	f3	>	0,	15	>	0.	15,	Let	(	X1	,	Y1	),	.	or	Suppose	that	X	(X1,	,Xn)
is	a	sample	from	a	population	with	density	x,B)	and	that	the	conditions	of	Theorem	3.4.1	hold.	In	Problem	1.1.	1	2,	we	derived	the	model	G(y,	Ll.)	=	1	-	[1	-	F0(y)J",	y	>	0,	Ll.	>	0.	We	will	discuss	the	phenomenon	further	in	the	next	section.	II,	ffi	New	York:	Hafner	Publishing	Co.,	1961,	1966.	The	left	column	gives	the	degrees	of	freedom.	(a)	Show	that
the	maximum	likelihood	estimates	of	Tfit,	1Ji	2	are	given	by	�	Tfil	where	R;	�	L;	N,;,	C;	�	Li	N	;	.	But	by	(3.3.13)	for	any	competitor	o	sup	R(O	,	o)	>	E,,	(R(O,&))	>	rk	�	supR(O,&')	�	o(	l).	•	n	where	f1	denotes	the	mean	income	and,	thus,	E{t:i	)	=	0.	For	instance,	in	Example	4.4.	1	,	J1	=	Jl(P)	takes	values	in	N	=	(-oo,	oo)	in	Example	4.4.2,	"2	=	"2	(	P)
takes	values	in	N	=	(0,	oo	),	and	in	Example	4.4.5,	(f',	"2)	takes	values	in	N	=	(	-oo,	oo)	x	(0,	oo).	(A,	Xm).	Then	(3.4.15)	V	log	The	theorem	follows	because,	by	Lemma	=	The	lower	bound	given	in	the	information	inequality	depends	on	through	=	(),	we	obtain	a	universal	lower	If	we	consider	the	class	of	unbiased	estimates	of	bound	given	by	the
following.	,z�)T	and	J	i	s	the	n	x	n	identity.	c	=	nIp.	then	Var(J'k)	is	minimized	by	choosing	100(1	-	a)%	confidence	intervals	for	a	and	6k.	Define	ry	=	h(8)	and	let	f(x,	ry)	denote	the	density	or	frequency	function�of	X	in	terms	of	T}	(i.e.,	reparametrize	the	model	using	ry).	In	Example	4.8.2,	let	U(	I)	<	·	·	-	<	u	Jlo	show	that	the	one-sided,	one-sample	t
test	is	the	likelihood	ratio	test	(for	o:	<	�).	As	we	previously	remarked,	the	conditions	of	the	infor	mation	inequality	are	satisfied.	If	we	are	estimating	a	real	parameter	such	as	the	fraction	()	of	defectives,	in	Example	1.1.1,	or	p,	in	Example	1.1.2,	it	is	natural	to	take	A	=	R	though	smaller	spaces	may	serve	equally	well,	for	instance,	A	=	{	0,	�,	.	RAO,
C.	However,	if	gross	errors	occur,	we	ob	serve	not	X*	but	X	=	(X1,	Xn)	where	most	of	the	Xi	=	x:,	but	there	are	a	few	•	•	•	•	'	'	'	!	,	!	'	"	'	•	Section	3.5	191	Nondecision	Theoretic	Criteria	�	and	use	B(X1	,	.	Because	1r	(z)	varies	between	0	and	1,	a	simple	linear	representation	zT	{3	for	1r	(	)	over	the	whole	range	of	z	is	impossible.	n	B,	1.3	'	!	The	first	of
these	equalities	holds	because	Y1	is	an	indicator.	General	link	functions	Links	other	than	the	canonical	one	can	be	of	interest.	with	Xi	binomial,	B(	mi	,	1ri	).	That	is,	J	I.P	(x,	O)	jdP(x)	<	co,	0	E	e,	p	E	p	and	O(P)	is	the	unique	solution	of(5.4.21)	and,	hence,	O(Pe)	=	i	•	•	•	•	'	'	0.	(2)	The	restriction	that's	x	E	Rq	and	that	these	families	be	discrete	or
continuous	is	artifi	cial.	(Prove	or	disprove.)	4.	Show	that	J•(X1	-x•,	.	We	return	to	this	in	Volume	II.	.,	Xn	independent,	identically	distributed	(i.i.d.)	random	variables	with	common	unknown	distribution	function	F.	Establish	(B.5.!6}-{B.5.19).	where	T	is	known,	�	zT{3,	and	b'	and	g	are	monotone.	Show	that	T(X)	is	sufficient.	154	Methods	of
Estimation	[1	+	exp{	-x)J-	1	,	(c)	Show	that	for	the	logistic	distribution	F0(x)	w	Chapter	2	is	strictly	convex	and	give	the	likelihood	equations	for	f.l	and	cr.	Problem	B.2.8)	are	sufficient	for	f.	"'	V(A(y	))	The	justification	of	these	approximations	is	the	content	of	Theorem	B.2.2.	The	following	generalization	of	(A.8.10)	is	very	important.	,	Yn	be	i.i.d.
described	by	15.	l	l	.	Show	how	to	choose	()	to	make	J.L	-	v	arbitrarily	large.

(N.	R.	Draper,	Short	Book	Reviews,	Vol.	24	(2),	2004)	"This	is	most	definitely	a	book	about	mathematical	statistics.	It	is	full	of	theorems	and	proofs	…	.	Presuming	no	previous	background	in	statistics	…	this	certainly	would	be	my	choice	of	textbook	if	I	was	required	to	learn	mathematical	statistics	again	for	a	couple	of	semesters."
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